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Abstract

The main goal of this work is represented by the study of the constrained portfolio
representation problem. It consists in defining the dynamics of those portfolios within
a certain class that best represents the inherent risk structure of a given financial
exposure. An interesting example of this question arises in the context of ALM for
life insurance firms, where the scale of a given portfolio of policies is to be reduced
for analysis and management purposes.

This problem is initially formalized and addressed on a general setting, within the
theory of stochastic integration in UMD Banach spaces and the Malliavin calculus
developed in such a framework. Next, a numerical study applied to portfolios of term
insurance policies is discussed when considering a LIBOR Market Model describing
the time evolution of the forward rates term structure.

On the other hand, the study of the asymptotic stability of a given class of risk
estimators, when enlarging the informative data set, provides a further goal of the
present work. In this respect, a refined notion of robustness which applies when
dealing with random probability measures is characterized in terms of the conver-
gence properties displayed by the empirical process associated to a given sequence of
stationary random variables.
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Resumen

El principal objetivo de este trabajo viene dado por el estudio del problema de repre-
sentación de carteras con restricciones. Consiste en definir las dinámicas de aquellas
carteras que dentro de una cierta clase mejor representan la estructura de los riesgos
inherentes de una exposición financiera dada. Un ejemplo interesante de esta cuestión
surge en el contexto del ALM para compañ́ıas de seguros de vida, donde el tamaño
de una cartera de pólizas debe ser reducido para su análisis y gestión.

Inicialmente, este problema se formaliza y aborda en un contexto general, dentro
de la teoŕıa de integración estocástica en espacios de Banach UMD y del cálculo de
Malliavin desarrollado en ese marco. A continuación, se analiza un estudio numérico
aplicado a carteras de pólizas de seguros a plazo, cuando se considera un LIBOR
Market Model para describir la evolución temporal de los tipos de interés forward.

Por otro lado, el estudio de la estabilidad asintótica de una clase dada de esti-
madores del riesgo, cuando se ampĺıa el conjunto de datos, proporciona un objetivo
adicional al presente trabajo. En este sentido, una noción refinada de robustez, que
se aplica cuando se manejan medidas de probabilidad aleatorias, se caracteriza en
términos de las propiedades de convergencia verificadas por los procesos emṕıricos
asociados a una sucesión dada de variables aleatorias estacionarias.
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Resumo

O principal obxectivo deste traballo vén dado polo estudo do problema de repre-
sentación de carteiras con restricións. Consiste en definir as dinámicas daquelas
carteiras que dentro dunha certa clase mellor representan a estrutura dos riscos in-
herentes dunha exposición financeira dada. Un exemplo interesante desta cuestión
xorde no contexto do ALM para compañ́ıas de seguros de vida, onde o tamaño dunha
carteira de pólizas debe ser reducido para a súa análise e xestión.

Inicialmente, este problema formaĺızase e abórdase nun contexto xeral, dentro da
teoŕıa de integración estocástica en espazos de Banach UMD e do cálculo de Malliavin
desenvolto nese marco. A continuación, anaĺızase un estudo numérico aplicado a
carteiras de pólizas de seguros a prazo, cando se considera un LIBOR Market Model
para describir a evolución temporal das tasas de xuro forward.

Doutra banda, o estudo da estabilidade asintótica dunha clase dada de estimadores
do risco, cando se ampĺıa o conxunto de datos, proporciona un obxectivo adicional
ao presente traballo. Neste sentido, unha noción refinada de robustez, que se aplica
cando se manexan medidas de probabilidade aleatorias, caracteŕızase en termos das
propiedades de converxencia verificadas polos procesos emṕıricos asociados a unha
sucesión dada de variables aleatorias estacionarias.
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CHAPTER 1

Introduction

Over the past decades, the life insurance industry has undergone major changes driven
by the evolution of the economic environment and a combination of different advances
both in technology and financial practices. Today’s life insurance market is far more
complex than in the past and it offers a wide range of different contracts, which are
difficult to differentiate without an expert knowledge. As a result of these develop-
ments, assets and liabilities cash flow matching had has significantly increased and
insurance sector has been made progressively more connected to financial markets.
Nowadays, insurance companies deal with a large number of different securities, which
are traded in order to hedge their exposure.

Even on a regulatory level, the life insurance sector experienced dramatic trans-
formations aimed at promoting overall welfare. In order to oversee and enforce the
regulation within the European Union insurance sector, the European Insurance and
Occupational Pension Authority (EIOPA) was created in 2010 as a part of the Euro-
pean System of Financial Supervision. It constitutes an independent entity which pro-
vides advice to the European Commission, the European Parliament and the Council
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of the European Union. Some changes in the regulation within the life insurance sec-
tor have been also promoted by the European Court of Justice, with the major Test
Achats case ruled on March 2011, which prohibits the gender-based discrimination in
policy pricing.

Under the Solvency II Directive issued by the European Union in November 2009
and entered into force in January 2016, insurance companies are required to store a
sufficient amount of funds aimed at reducing the social cost of potential losses and
preventing future crisis. The required capital reflects the risk faced by the insurer
and it is to be based on a market-consistent valuation approach of the assets and the
liabilities in the balance sheet.

According to this framework, market risk management plays a central role within
the insurance sector as well. In this respect, a major source of risk is provided by the
fluctuation of the interest rate term structure, since most of the products traded by
the insurers in order to hedge its exposure range typically from bonds or bond-type
instruments to complex interest rates securities.

Many of the updates that has been undergone within the risk management prac-
tices give rise to a number of problems in the life insurance industry, which involve
and promote the development of sophisticated models and mathematical tools.

1.1 LINES OF RESEARCH AND OBJECTIVES OF THE THESIS

This thesis is the result of the research activities conducted as a PhD student at
Universidade da Coruña and Afi in Madrid, in the period between October 2015 and
September 2018.

This work has been developed under the auspices of the Wakeupcall project funded
in the EU Horizon2020 framework, which has been promoted in order to contribute
in the advances that have been taken place within the financial practices as a conse-
quences of the 2008 financial crisis.
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Based on the objectives of the project, the following lines of research have been
derived.

1. Robust risk estimation. As a consequence of the 2008 financial crisis, risk man-
agement experienced a number of transformations caused by the changes in regulation
and the development of new financial practices. As a result, the modern theory of
risk measures started with the seminal work by Artzner et al. [7] has been strongly
pushed forward over the last decade.

According to the standard approach, the downside risk of a certain exposure is as-
sessed on the basis of the past information. As a consequence, the asymptotic stability
of the risk estimators when enlarging the historical dataset provides a fundamental
issue.

Based on these features, the following objectives have been derived.

1.1 Qualitative robustness. Besides statistical consistency, Cont et al. [44] high-
lighted that the notion qualitative robustness introduced by Hampel [97, 98]
and Huber [102] is a desirable property of asymptotic stability when dealing
with risk estimators. On the other hand, an overall framework according to
which statistical consistency and qualitative robustness may be regarded from
a common perspective is missed in the existing literature.

The main goal is to assess the results regarding the asymptotic stability of a
given set of estimators in terms of stationary sequences of random variables.
Further, the development of a refined version of qualitative robustness derived
from the notion of statistical consistency and that applies when dealing with
random probability measures constitutes a primary objective.

1.2 Topological issues. Cont et al. [44] and Kou et al. [113] highlighted that some
commonly used risk functionals fail to be continuous with respect to the weak
topology of measures. Briefly, the reason lies behind the fact that the weak

3



topology is not sensitive enough to the tail behaviour of the distributions, which,
by the way, is the main issue in risk analysis. Some authors [114, 115, 185, 186]
suggested to overcome this lack by considering a proper refinement of the weak
topology defined in terms of given functions that assess the displacement of the
distributions on their tails.

Stating statistical consistency and qualitative robustness in terms of this topo-
logical refinement is a main task. On the other hand, the Borel σ-algebra gen-
erated by the weak topology of measures owns desirable properties that play a
central role in this context, when dealing with many measurability issues. Thus,
characterizing the Borel σ-algebra generated by the refined topology cited above
represents a primary objective.

2. Portfolio representation. Recent updates in risk practices and regulations
within the life insurance sector have enhanced the relevance of the stochastic models
for the assets and liabilities management. In this respect, appropriate tools are needed
in order to oversee the balance sheet of the company, which may involve portfolios of
considerable size in the case of well-established life insurance firms.

In this dissertation we focus the attention on the liabilities of the company, which
are mainly represented by the contracts sold to the clients. According to the new
regulatory framework, insurance firms are allowed to reduce the scale of their portfolio
of liabilities for analysis and management purposes, by considering only a certain
group of products. Such a procedure is allowed only in the case when this scale
reduction does not result in any misrepresentation of the risks underling the original
portfolio.

Based on these features, the following objectives have been addressed.

2.1. Portfolio representation. The practice of the efficient portfolio reduction may
be understood in connection with the problem of portfolio representation, in
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which one seeks to substitute a given portfolio by a second one that owns similar
characteristics in terms of risks.

The primary objective in this context is to address this problem on a general
level by minimizing a certain risk functional, which assesses the discrepancy
between the two portfolios in terms of the stochastic variation of the underling
risk factors over a given time horizon.

2.2. Stochastic integration in Banach spaces. The fluctuation of interest rates repre-
sents a main source of risk for any life insurance firm. According to the standard
models, infinite dimensional dynamics are considered to capture the stochastic
trend of the interest rate term structure over time. In this respect, many au-
thors have developed a theory of bond portfolio in a infinite dimensional Hilbert
space framework [39, 40, 69, 156].

In recent years, many results in stochastic calculus have been generalized to
Banach spaces. In particular, Van Neerven, Veraar and Weis [174, 177, 178]
recently advanced a theory for stochastic integration when dealing with the
so-called UMD Banach spaces.

In this respect, developing a consistent portfolio theory in a Banach space frame-
work represents a primary goal.

2.3. Malliavin calculus. Kettler, Prosk and Rubtsov [110] recently proposed a stochas-
tic notion of bond duration by using Malliavin calculus for Gaussian random
fields in a Hilbert space setup. The duration is a largely exploited tool when
dealing in the fixed income market, since it provides the sensitivity of a given
portfolio to the interest rates fluctuation.

Motivated by the developments in stochastic integration described above, some
authors [127, 128, 149] extended a number of standard notions of Malliavin to
a Banach spaces framework.

In this connection, assessing the problem of portfolio representation in terms of
Malliavin calculus in Banach spaces represents a natural feature.
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2.4. Policy portfolio theory. According to the previous arguments, addressing the
problem of the policy portfolios scale reduction as a particular instance of the
portfolio representation problem constitutes a major goal. For this purpose,
the development of a consistent life insurance policy portfolio theory in Banach
space is needed.

2.5. Numerical issues. The numerical minimization of the risk functional that we
introduce in order to assess the portfolio representation problem may be com-
putationally demanding, since it generally leads to a global optimization prob-
lem in high dimensions. In this respect, hybrid algorithms which combine a
stochastic otpmization algorithm such as Simulated Anneaing [77] with a local
gradient scheme [35, 123] may be used in order to address this problem. On the
other hand, the numerical simulation of the interest rates dynamics may result
in high computational costs, which may be addressed by considering efficient
parallelization techniques.

The development of efficient algorithms for the solution of the portfolio repre-
sentation problem in life insurance and the analysis of their performance from
the numerical point of view provide a main goal of this work. In this connection,
the use of proper computer architectures represents a primary issue.

1.2 OUTLINE OF THE THESIS

This dissertation is organized in two different parts.

Part I refers to the studies that have been conducted within the modern theory
of risk measures and robust risk estimation.

Chapter 2 briefly reviews the convergence results which motivate the research
problems that are addressed in the following chapters. Particular emphasis is placed
on the notion of weak topology and common forms of probabilistic symmetry, such
as stationarity and exchangeability.
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Chapter 3 presents a review of the modern theory of risk measures, based on a
number of references that are cited therein. Particular attention is paid upon the
notion of qualitative robustness in risk estimation.

The content of Chapter 4 is mostly based on [75], except for the material in Section
4.1, which is not part of the cited work and which collects a personal development
of different results, which have been found appealing for the sake of completeness.
In this chapter a refined version of qualitative robustness is derived by the notion of
statistical consistency in terms of random probability measures.

Part II deals with the problem of portfolio representation with particular em-
phasis on the life insurance sector.

Chapter 5 collects the main results within the theory of stochastic integration in a
Banach space framework and the related literature. This review is based on a number
of references cited therein. Although most of the results in this chapter are known,
those that had not been found in a suitable form within the existing literature are
discussed and proved in Section 5.4.

Chapter 6-7 contain original work and are based on [79]. In Chapter 6 the problem
of portfolio representation is addressed in terms of the theory of stochastic integration
in Banach spaces while Chapter 7 discusses this approach when dealing with life
insurance portfolios. Special emphasis is placed on the case of portfolios composed
by whole life insurance policies.

Chapter 8 is based on [76]. It consists in a numerical study of the approach
discussed in the previous chapter applied to term insurance portfolios, by considering
the LIBOR Market Model to describe the time evolution of the interest rate term
structure.

Finally, a section discussing some open issues and ideas for further lines of research
is presented.
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Part I

Robust Risk Estimation
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CHAPTER 2

Probabilistic Symmetries

Let (E,E ) be a Borel space. Hereafter, a law or distribution is a Borel probability
measure defined on it. A random element in E is any E-valued random variable
defined on a probability space (Ω,F ,P). A random sequence in E is a sequence of
random elements in E. We shall write M1(E) to denote the entire family of laws on
(E,E ). Moreover, for any measurable and real valued function f defined on (E,E )
and any law µ ∈M1(E) such that

∫
E |f |dµ <∞, we shall write

µf ,
∫
E
fdµ.

Throughout this chapter, we shall characterize the topological structure of M1(E)
and give an account of some convergence results that will play a relevant role later
on. Moreover, we shall discuss the symmetries displayed by random sequences in
E of major concern for the present work and that are to be regarded as a distribu-
tional forms of invariance that arise when considering certain families of measurable
transformations.
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2.1 WEAK TOPOLOGY AND EMPIRICAL PROCESSES

In this section, we assume E to be metrizable. Thus, we shall write dE to denote the
generic metric defined of it and consistent with its topological structure. In this case,
we have that E coincides with the Bair σ-algebra generated by the the functionally
open sets of the form Uf , {x ∈ E : f(x) > 0}, where f is some continuous function
on E, since in the present case E turns out to be perfectly normal, i.e. every closed
set is the set of zeros of some continuous function on E (cf. [73], § 3.8). On the other
hand, the σ-algebra E is also generated by the class of all bounded and continuous
functions, and thus it consists in the smallest σ-algebra with respect to which any
continuous function on E is measurable.

Recall that E is said to be a Polish space if there exists a metric dE with respect
to which it turns out to be complete and separable.

The weak topology. Let Cb(E) denote the space of all real-valued continuous and
bounded functions on E. Recall that it turns out to be a Banach space if endowed
with the supremum norm ‖f‖∞ , supx∈E |f(x)|, for any f ∈ Cb(E).

Definition 2.1 (Weak Topology). The weak topology on M1(E) is the coarsest
topology that renders continuous the map of the form µ ∈ M1(E) 7→ µf , varying
f ∈ Cb(E).

As a result, any sequence µ1, µ2, ... of laws in M1(E) converges to µ ∈ M1(E)
with respect to such topology, if and only if

µnf → µf, for any f ∈ Cb(E). (2.1)

In this case, we say that the sequence µ1, µ2, ... weakly converges to µ and we write
µn ⇒ µ.

This notion of convergence can be restated in terms of the topological properties
of the Borel sets in E . At this end, for any Borel set B ∈ E , B̄ denotes the closure of
B, intB its interior (i.e. the largest open Borel set included in B) and ∂B , B̄ \ intB

12



the boundary of B. Recall that for any B ∈ E the boundary ∂B is closed. Moreover,
we shall say that B ∈ E is a continuity set of µ if µ(∂B) = 0. It is worth to recall
that the family of continuity sets forms an algebra included in E (cf. [21], Proposition
8.2.8).

The following result provides a well-known characterization for the weak conver-
gence.

Theorem 2.1. Let (µn)n be a numerable family of laws in M1(E) and µ ∈M1(E),
then the following statements are equivalent:

i. µn ⇒ µ;

ii. For any open Borel set U ∈ E , lim infn µn(U) ≥ µ(U),

iii. For any closed Borel set C ∈ E , lim supµn(C) ≤ µ(C);

iv. For any continuity set B ∈ E of µ, limn µn(B) = µ(B).

Proof. See, e.g., Theorem 6.1 in [144].

The following result gives a condition for which M1(E) endowed with the weak
topology may be metrized as a separable metric space.

Theorem 2.2. Endowed with the weak topology, the space M1(E) can be metrized as
a separable space if and only if the space E is a separable metric space.

Proof. See, e.g., Theorem 6.2 in [144].

Notice that the most natural form of smoothness is provided by the Lipschitz
condition. In particular, we shall consider the family of bounded Lipschitz-continuous
function BL(E) , {f ∈ RE : ‖f‖BL < ∞}, where ‖ · ‖BL , ‖ · ‖∞ + ‖ · ‖L has
been defined by considering the norm ‖f‖L , supu6=v |f(u) − f(v)|/dE(u, v), for any
Lipschitz-continuous function f on E. Clearly, ‖ · ‖BL turns out to be a norm on
BL(E). Moreover, one has that fg ∈ BL(E) for any f, g ∈ BL(E), and in particular
‖fg‖BL ≤ ‖f‖BL‖g‖BL, (cf. [63], Proposition 11.2.3).

13



Consider the application

γ(µ, ν) , sup{|(µ− ν)f | : ‖f‖BL ≤ 1}, for any µ, ν ∈M1(E), (2.2)

where we let (µ− ν)f , µf − νf , that turns out to be a metric on M1(E), (cf. [63],
Proposition 11.3.2.). Note that such a metric results to be similar to the distance
generated by the dual Lipschitz norm

‖µ‖?L , sup
{
|µf | : ‖f‖L ≤ 1

}
,

even if easily ‖µ− ν‖?L ≤ γ(µ, ν) ≤ 2‖µ− ν‖?L, for any µ, ν ∈M1(E). We shall refer
to the metric (2.2) as the Fortet-Mourier distance on M1(E).

For any Borel set B ∈ E , let Bε , {x ∈ E : infy∈B dE(y, x) < ε} denote the ε-hull
of B. The application below

π(µ, ν) , inf{ε > 0 : µ(B) ≤ ν(Bε) + ε for any B ∈ E }, for any µ, ν ∈M1(E),
(2.3)

provides another distance on the space M1(E), (cf. [63], Theorem 11.3.1). More
precisely, we shall refer to (2.3) as the Prohorov metric on M1(E). Notice that, since
Bε = (B̄)ε, we obtain an equivalent definition if B is required to be closed.

Remark. Observe that the Fortet-Mourier distance γ as well as the Prohorov distance
π depend on the distance dE generating the topological structure of E. Besides, if
d′E is a metric on E equivalent to dE, then, with obvious notation, the corresponding
distance π′ is equivalent to π and the same for γ′ and γ. This allows us to consider the
consistent metric d that turns out to be more useful for our purposes. In particular,
among all the distances consistent with the topology on E, there is one that is totally
bounded, which will be convenient to use later on; see, e.g., Theorem 2.8.2 in [63].
On the other hand, note that the specific choice of the consistent metric dE does not
affect the separability of E.

The following result shows that, in presence of separability, the metrics (2.2) and
(2.3) both metrize the weak topology on M1(E).

14



Theorem 2.3. Assume E to be separable. Given a sequence µ0, µ1, ... of laws in
M1(E), the following statements are equivalent

i. µn ⇒ µ0;

ii. µnf → µ0f , for any f ∈ BL(E);

iii. γ(µn, µ0)→ 0;

iv. π(µn, µ0)→ 0.

Proof. See, e.g., Theorem 11.3.3. in [63].

A family N ⊆ M1(E) is called uniformly tight if for any ε > 0 there exists a
compact set Kε ⊂ E such that µ(Kε) > 1 − ε, for all µ ∈ N. Moreover, a law
µ ∈M1(E) is said tight if {µ} is uniformly tight.

We shall say that N is weakly relatively compact if every sequence of laws in N

contains a weakly convergence subsequence, i.e. for any sequence (µn)n of laws in N

there exist a subsequence (µnk)k and a law µ ∈ M1(E) (not necessarily in N) such
that µnk ⇒ µ. Moreover, N is termed weakly precompact if its closure in the weak
topology is compact.

Theorem 2.4. Assume E to be a Polish space. If N is a subset of M1(E), then the
following statements are equivalent

i. N is uniformly tight;

ii. N is weakly relatively compact;

iii. N is weakly precompact;

iv. N is totally bounded for π and γ.

Proof. See, e.g., Theorem 11.5.4. in [63].

Since every Cauchy sequence in a metric space is totally bounded, Theorem 2.4
directly leads to the following result.
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Theorem 2.5 (Prohorov). Assume E to be a Polish space. The space M1(E) is
complete for π and γ.

Convergence of empirical processes. We call transition kernel from Ω to E any map
υ : Ω× E → R+ such that

i the map υ(·, B) : ω 7→ υ(ω,B) is F -measurable for any B ∈ E ;

ii. the map υ(ω, ·) : B 7→ υ(ω,B) is a measure on (E,E ), for any ω ∈ Ω.

If λ is a finite measure on (E,E ) and Λ is a positive F ⊗ E -measurable function
on Ω× E, then the map

(ω,B) 7→
∫
B

Λ(ω, x)λ(dx), for any ω ∈ Ω and B ∈ E ,

defines a transition kernel from (Ω,F ) to (E,E ). Moreover, if µ is finite on (Ω,F ),
every σ-bounded transition kernel υ from Ω to E, i.e. such that there exists a mea-
surable partition (En)n of E for which ω 7→ υ(ω,En) is bounded for any n, uniquely
defines the measure α on the product space (Ω×E,F ⊗ E ) that is given below, (cf.
[42], Theorem 6.11.),

α(A×B) ,
∫
A
υ(ω ,B)µ(dω), for A ∈ F and B ∈ E .

We shall say that a transition kernel υ is a probability kernel, if its range correspond
to the unit interval on the real line, i.e. if υ(ω, ·) is a probability measure on (E,E ),
for any ω ∈ Ω. In this respect, we shall also refer to υ as a F -measurable random
measure on (E,E ).

Throughout this section, given a random sequence ξ = (ξ1, ξ2, ...) in E we shall
consider the family of probability kernels from Ω to E of the form

mn(ω,B) , 1
n

n∑
i=1

δξi(ω)(B), for any ω ∈ Ω and B ∈ E . (2.4)

We usually refer to the sequence (2.4) as the empirical process directed by ξ.
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Notice that if f ∈ Cb(E), then mnf → µf a.s., due to the strong law of large
numbers. However the set of null measures on which the convergence fails depends
on the specific function f ∈ Cb(E). For this reason the following result is not trivial.

Theorem 2.6 (Varadarajan). Let E be separable and fix µ ∈M1(E). If the variables
(ξn)n are independent with common law µ, then the empirical process (2.4) a.s. weakly
converge to µ, i.e.

P{ω ∈ Ω : mn(ω, ·)⇒ µ} = 1.

Proof. See, e.g., Theorem 11.4.1 in [63].

Since almost everywhere pointwise convergence implies convergence in probability,
under the same assumptions of the latter theorem, we get that

χ(mn, µ) , inf{ε > 0 : P(π(mn, µ) > ε) ≤ ε} → 0, as n→ +∞, (2.5)

where χ denotes the Ky Fan metric associated to π, on the space of probability kernels
from Ω to E, (cf. Theorem 9.2.2. in [63]).

Classically, the result discussed in Theorem 2.6 was initially introduced by Glivenko
and Cantelli, when operating on the real line.

Theorem 2.7 (Glivenko-Cantelli). Let µ ∈ M1(R) with cumulative function F .
Then, ‖Fn(ω, · )− F‖∞ → 0, as n→ +∞, for P-almost any ω ∈ Ω.

Proof. See, e.g., Theorem 11.4.2. in [63].

Note that mnf → µf a.s. as n → +∞, due to Theorem 2.6, when the variables
(ξn)n that define the empirical process (2.4) are independent and with common law
µ, for any f ∈ Cb(E).

2.2 STATIONARITY AND EXCHANGEABLITY

Throughout this section, we discuss the main result that arise when considering cer-
tain forms of symmetry that characterize the distribution of the random sequences in
E.
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Stationarity. Fix a measure µ ∈ M1(E) with respect to which the triple (E,E , µ)
turns out to be a σ-finite probability space, i.e. in such a way that there exists a
countable measurable partition (En)n of E such that µ(En) is finite for any n ≥ 1.
A measurable transformation T from E into itself is called measure preserving if µ ◦
T−1 ≡ µ. Thus, if ξ is a random element in E with distribution µ, the transformation
T is measure preserving if and only if L (Tξ) = L (ξ). Moreover, a random sequence
ξ , (ξn)n in (E,E ) is said to be stationary if L (Σξ) = L (ξ), where Σ(xn)n , (xn+1)n
denotes the shift operator defined on the space EN of the sequences in E. These
notions appear to be strongly related, since T is measure preserving if and only if
(T nξ)n is stationary, (cf. [107], Lemma 9.1).

Note that when dealing with the space EN, the measurable structure may be ob-
tained by considering the product σ-algebra E N, which is generated by the evaluation
maps of the form πn : x 7→ πnx , xn, for any x = (xn)n in EN.

Mutatis mutandis, the notion of stationarity extends naturally to random se-
quences indexed by Z.

Throughout, let IT be the entire family of T -inavtaint set, i.e. the measurable
sets I ∈ E such that T−1(I) = I. Note that, since the map T−1 preserves all the set
operations, we get that IT is a sub-σ-algebra of E .

Theorem 2.8 (Birkhoff, von Neumann). Let T be a measurable transformation on
E with associated T -invariant σ-algebra Einv(T ). Given a random element ξ in E,
suppose that (T nξ)n is stationary. Then, for any f ∈ Lp(E,E , µ), for some p ≥ 1,
we get

mnf → E[f(ξ)|ξ−1IT ], a.s. and in Lp, as n→ +∞, (2.6)

where (mn)n is the empirical process (2.4) obtained by setting ξn , T n−1ξ, for n ≥ 1,
with the convention that T 0 , IE represents the identity operator on E.

Proof. See, e.g., Theorem 9.6. in [107].
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Notice that, under the hypotheses of Theorem 2.8, since (T nξ)n is stationary, and
thus T preserves the measure µ, every random variable within the sequence (ξn)n
admits the common distribution µ.

Ergodicity. A measure preserving transformation T from E into itself is said ergodic
if the T -invariant σ-algebra IT is µ-trivial, i.e. µ(B) ∈ {0, 1} for any B ∈ I .
Depending on the specific viewpoint, we shall say that µ is ergodic with respect to T
or that T is ergodic with respect to µ. In a natural way, a random element ξ in E is
said ergodic with respect to T if its distribution on (E,E ) is ergodic for T . In such a
case, the sub-σ-algebra ξ−1IT of F turns out to be P-trivial.

On the other hand, a random sequence (ξn)n in E is said to be ergodic if its
distribution on (EN,E N) is ergodic with respect to the shift operator Σ, i.e. the
shift-invariant σ-algebra IΣ composed by the set I ∈ E N such that Σ−1(I) = I

is trivial with respect to the distribution induced by (ξn)n on (EN,E N). Moreover,
the random elements in E that are ergodic with respect to some measure preserving
transformation T are those and those only the random elements ξ such that the
sequence (T nξ)n is ergodic with respect to Σ. In this case, every random sequence
(Λ ◦ T nξ)n is also ergodic for Σ, for any measurable operator Λ on E into itself (cf.
[107], Lemma 9.5).

When ξ is assumed to be ergodic with respect to T , or equivalently when (T nξ)n
is ergodic with respect to the shift operator Σ on EN, Theorem 2.8 boils down to

mnf → µf, a.s. and in Lp, as n→ +∞, (2.7)

where µ denotes the distribution induced by ξ on (E,E ), since in such a case the sub
σ-algebra ξ−1IΣ of F turns out to be P-trivial.

Law of large numbers. Recall that the measure P is always trivial on the tail σ-
algebra Tξ , ∩nσ{ξk : k > n}, when ξ1, ξ2, ... are independent random elements in
(R,B(R)), due to the Kolmogorov’s 0-1 law, (cf. [107], Theorem 2.13). As a result,
since ξ−1IΣ ⊂ Tξ, when assuming that (ξn)n are even i.i.d. and integrable and setting
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E = R, one has that Theorem 2.8 boils down to n−1(ξ1 + ... + ξn) → E[ξ1] a.s. and
in L1, as n → +∞. Hence, Theorem 2.8 can be regarded as a generalization of the
Kolmogorov’s law of large numbers.

Conditional probability. Given a random variable ξ ∈ L2(Ω,F ,P) and a sub σ-algebra
C ⊆ F , the conditional expectation E[ξ|C ] of ξ given C is defined as the Hilbert
space orthogonal projection of ξ onto the linear subspace of C -measurable random
variables, i.e. E[(ξ − E[ξ|C ])η] = 0, for any bounded C -measurable random variable
η. This definition extends to any ξ ∈ L1(Ω,F ,P) by continuity. It is worth to be
highlighted that the conditional expectation is defined only up a null set, i.e. two
version of the conditional expectation defined above coincide almost certainty with
respect to the restriction P|C of P to C .

A natural way to define a conditional probability given C ⊆ F is obtained by
setting P[A|C ] , E[1A|C ], for any A ∈ F , where this identity is to be understood
in the a.s. sense with respect to P|C . However, the P|C -null sets on which the σ-
additivity P[∪nAn|C ] = ∑

n P[An|C ] fails might depend on the sequence A1, A2, ... in
F . As a result, the σ-additvity might fail in general, since the union of such sets may
cover the entire space Ω. Nevertheless, this does not happen under some additional
conditions, that we shall discus later.

Definition 2.2 (Conditional Probability). The map P[ · |C ](·) : (ω,A) 7→ P[A|C ](ω),
defined for any ω ∈ Ω and A ∈ F , is a regular conditional probability if the following
assumptions are both true

i. For any A ∈ F , the identity P[A|C ] , E[1A|C ] holds a.s. with respect to P|C ,
where the map ω 7→ P[A|C ](ω) is C -measurable;

ii. For P|C -almost every ω ∈ Ω, P[ · |C ](ω) is a probability measure on (Ω,F ).

In the latter definition, the term ”almost every” may be avoided by considering a
P|C -null set C ∈ C , and thus by requiring that P[ · |C ](ω) is a probability measure
on (Ω,F ) if ω /∈ C, and P[ · |C ](ω) , δω̄(·) when ω ∈ C, for some ω̄ ∈ Ω a priori
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fixed.

Conditional distribution and disintegration. Let now ξ be a random element in (E,E ).
A regular conditional distribution of ξ given C ⊂ F is defined as a version of the
probability kernel P[ξ ∈ · |C ] from (Ω,F ) to (E,E ), i.e. a C -measurable random
probability measure on (E,E ).

More generally, we consider a measurable space (T,T ). If η is a random element
in (T,T ), then the regular conditional distribution of ξ given η is defined as a random
measure υ for which the equality υ(η,B) = P[ξ ∈ B|σ(η)] holds a.s., for any B ∈ E .
Thus, υ turns out to be a probability kernel from (T,T ) to (E,E ). Throughout,
we shall write P[ξ ∈ · |η] is spite of P[ξ ∈ · |σ(η)]. Note that in the case when ξ is
σ(η)-measurable or independent of η, one gets that P[ξ ∈ · |η] reduces to 1{ξ∈· } or
P(ξ ∈ · ) respectively. The following result turns out to be crucial.

Theorem 2.9 (Disintegration). Fix a sub-σ-algebra C of F and consider two mea-
surable spaces (E,E ) and (T,T ). Let ξ be a random element in (E,E ) and let υ be a
regular version of P[ξ ∈ · |C ]. Furthermore, let η be a C -measurable random element
in (T,T ). Then

E[f(ξ, η)|C ] =
∫
E
f(x, η)υ(dx), a.s. (2.8)

for any measurable function f defined on E × T such that E|f(ξ, η)| <∞.

Proof. See, e.g., Theorem 5.4 in [107].

There exist many conditions that guarantee the existence of a regular version of
a probability measure given a certain sub-σ-algebra. Since we deal with Borel metric
space, we recall the following result.

Theorem 2.10. Let (E,E ) a Borel space and µ a measure on it. Then, for any
sub-σ-algebra C of E , there always exists a regular version of the conditional law of
µ given C .

Proof. See, e.g., Corollary 10.4.6 in [22].
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Exchangeablility. Classically, a natural form of probabilistic symmetry is obtained by
considering a law invariance under permutations. Let I be a countable set of indices.
A family {ξi : i ∈ I} of random elements in (E,E ) is said to be exchangeable if

L {ξi : i ∈ G} = L {ξπG(i) : i ∈ G}

for any finite family of indices G ⊂ I and any permutation πG on it.
Note that every sequence of independent and identically distributed random vari-

ables is trivially exchangeable. Let EI be the family of the sequences in E indixed by
I, and E J the product σ-algebra generated by the projection maps πi : x 7→ xi, for
any x ∈ EI, varying i ∈ I. For any random measure υ on (E,E ), we write υ(ω, ·)I

to denote the product measure on (EI,E I) defined by υ(ω, ·) in the common way, for
any fixed ω ∈ Ω. The following definition will play a relevant role later on.

A sequence {ξi : i ∈ I} of random elements in (E,E ) is said conditionally i.i.d. if

P[ξ ∈ · |C ] = υI, a.s. (2.9)

for some sub-σ-algebra C of F , and some random probability measure υ on (E,E ).
Note that, since υ turns out to be C -measurable, the identity (2.9) is still valid

when replacing C with σ(υ), i.e. the smallest σ-algebra on Ω with respect to with υ

turns out to be a random measure on (E,E ).

Theorem 2.11 (de Finetti, Ryll-Nardzewski). Let ξ be a numerable random sequence
in the Borel space (E,E ). Then, it is exchangeable if and only if P[ξ ∈ · |υ] = υN

almost surely with respect to P, for some random probability measure υ on (E,E ).

Proof. See, e.g., Theorem 9.16 in [107].

Moreover, we refer to [5, 108, 111], for the proof of Theorem 2.11 by martingale
arguments.

Hereafter, we shall refer to υ in Theorem 2.11 as the directing random measure
associated to the sequence ξ. Moreover, for any numerable exchangeable random
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sequence, the associated directing random measure turns out to be a.s. unique (see,
e.g., Proposition 1.4 in [108]).

0-1 laws. Recall that the shift-invariant σ-algebra IΣ is defined as the collection of
those measurable sets in E N that are invariant under the action of the shift map on
EN. Recall also that it turns out to be µ-trivial for any distribution µ induced on
(EN,E N) by an ergodic sequence of random elements in (E,E ).

In a similar way, it is possible to introduce the measurable structure on EN that
naturally arises when dealing with permutations. In order to make this precise, note
that any finite permutation π of N, i.e. a map π : N → N such that π(n) = n

for all but finitely many n ∈ N, induces a permutation map Tπ on EN, by setting
Tπ(x) , (xπ(n))n. IN this respect, a measurable set I ∈ E N is said symmetric if
T−1
π (I) = I, for any finite permutation π of N. The family P of the symmetric sets

is easily seen to form a sub-σ-algebra of E N. In particular, we shall refer to P as the
permutation invariat σ-algebra in EN.

The tail σ-algebra associated to the sequence ξ is defined as Tξ , ∩nσ{ξk : k > n}.
The following result shows that these σ-algebras are equivalent in the exchangeable
setup.

Theorem 2.12 (Hewitt & Savage, Olshen). Let ξ be an exchangeable and numerable
random sequence in a Borel space (E,E ) with directing random measure υ. Then,

σ(υ) = ξ−1IΣ = ξ−1P = Tξ. (2.10)

Moreover, all these σ-algebras are P-trivial when dealing with a sequence ξ of i.i.d.
random elements.

Proof. See, e.g., Corollary 1.6. in [108].

Strong Stationarity. Generally, stationarity and exchangeability are not equivalent
since stationarity represents a stronger notion of distributional symmetry. Neverthe-
less, it is possible to restate the notion of exchangeability in terms of a stronger form
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of stationarity that looks at shift operators of random order.
Let (Fn)n be a filtration in F . We shall say that an Fn-adapted random se-

quence ξ in (E,E ) is Fn-exchangeable if every shifted sequence Σnξ , (ξn, ξn+1, ...)
is conditionally exchangeable given Fn, for any n ≥ 1. In addition, we say that ξ is
strongly stationary, or more properly Fn-stationary if L (Στξ) = L (ξ), for any finite
stopping time τ associated to the filtration (Fn)n.

Theorem 2.13. Let ξ be a numerable random sequence in a Borel space (E,E )
adapted to some filtration (Fn)n. Then, the following statements are equivalent

i. ξ is Fn-stationary;

ii. ξ is Fn-exchangeable;

iii. The prediction sequence πn , P[Σnξ ∈ · |Fn], for n ≥ 0, is a measure-valued
martingales, i.e.

(
πn(B)

)
n

is a real-valued Fn-martingales, for any B ∈ E .

Proof. See, e.g., Proposition 9.18 in [107].
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CHAPTER 3

Risk Measures

In the wake of the financial crunch started in August 2007, the development of efficient
models for the downside risk estimation has been has been increased of importance
across the financial institutions. The problem naturally extended to the academic
world, since it appears challenging also from the theoretical point of view.

In the new era of quantitative risk management, the downside risk is assessed as a
function of the exposure worth at the end the trading period. These type of functions
are nowadays called risk measures. According to the seminal work of Artzner et al.
[7], any risk measure is defined by considering a certain class of properties that it
should satisfy in order to be consistent from both the theoretical and the practical
point of view. Such a set of properties forms the axiomatic system that defines the
class of the so-called coherent risk measures.

This chapter presents a review of the modern theory of risk measures, with a main
focus on the robust risk estimation.
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3.1 AXIOMATIC AND SETUP

Let Ω be a set in which any element represents a certain scenario. A financial position
is generally described in terms of some map ξ : Ω → R, where ξ(ω) represents the
discounted net worth of the position at the end of the trading period, if the scenario
ω ∈ Ω occurs. We follow the standard approach by assuming that positive values for
ξ stand for gains while negative values describe the losses.

Monetary risk measures. Throughout, we assume a set X of functions ξ : Ω → R to
be fixed.

Definition 3.1 (Monetary Risk Measure). A functional ρ : X→ R is said a monetary
risk measure if the following properties are satisfied,

A1. (Monotonicity) ρ(ξ) ≤ ρ(η), for any ξ, η ∈ X such that ξ(ω) ≥ η(ω) for any
ω ∈ Ω,

A2. (Cash Invariance) ρ(ξ +m) = ρ(ξ)−m, for any ξ ∈ X and m ∈ R.

The properties required in Definition 3.1 admit a natural interpretation. On one
hand, A1 encodes the fact that the downside risk reduction is guaranteed when the
financial profile is increased. On the other hand, A2 encodes the fact that the overall
risk of the position is reduced by an amount m, when the same quantity m is added
to the position and invested in a risk-free manner. From a regulatory point of view,
such capital can be read as a security fund against the financial crunch.

Moreover, note that any monetary risk measure ρ : X→ R satisfies the following
condition

ρ(ξ + ρ(ξ)) = 0, for any ξ ∈ X.

Throughout, we shall define the acceptance set associated to some risk measure
ρ : X→ R as the set Aρ ⊆ X defined by

Aρ , {ξ ∈ X : ρ(ξ) ≤ 0}. (3.1)
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On the other hand, given any A ⊂ X consider the application

ρA (ξ) , inf{m ∈ |m+ ξ ∈ A }, for any ξ ∈ X. (3.2)

Definition 3.2 (Convex Risk Measure). A monetary risk measure ρ : X → R is
usually called a convex risk measure, if it is convex, i.e.

A3. (Convexity) ρ(λξ + (1− λ)η) ≤ λρ(ξ) + (1− λ)ρ(η), for any ξ, η ∈ X and any
λ ∈ (0, 1).

Property A3 in Definition 3.2 stands for the fact that if one diversifies the invest-
ment, the risk of the overall position should be reduced.

Proposition 3.1. Let ρ : X → R be a convex risk measure, then ρ ≡ ρAρ and Aρ is
convex and non-empty.

Proof. See, e.g., Proposition 4.6 in [83].

Proposition 3.1 says that a convex risk measure may be regarded as the minimal
amount of capital to put aside in order to make the position safe.

Definition 3.3 (Coherent Risk Measure). A monetary risk measure is said a coherent
risk measure if it satisfies,

A4. (Positive Homogeneity) ρ(λξ) = λρ(ξ), for any ξ ∈ X and λ > 0,

A5. (Subadditivity) ρ(ξ+ η) ≤ λρ(ξ) + (1− λ)ρ(η), for any ξ, η ∈ X and λ ∈ (0, 1).

Property A4 in Definition 3.3 encodes essentially the belief that the risk must
increase in the dimension of the exposure. However, risk could grow non linearly as
the size of position increases, when considering illiquid portfolio.

Law invariance. Throughout, we fix a complete probability space (Ω,F ,P). Thus,
we assume X to be a set of real-valued random variables defined on it.
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Definition 3.4 (Law Invariance). A risk measure ρ : X → R is said to be law-
invariant if ρ(ξ) = ρ(η) for any couple of random elements ξ, η ∈ X such that L (ξ) =
L (η).

Let M(X) , {L (ξ) : ξ ∈ X}. Any law-invariant risk measure ρ : X→ R naturally
defines the functional Rρ : M(X)→ R given by

Rρ(µ) , ρ(ξ), for any ξ ∈ X such that L (ξ) = µ, (3.3)

We shall refer to the functional defined by the identity (3.3) as the distribution based
risk functional associated to the measure ρ.

Definition 3.5 (Stochastic Dominance). Given a couple of real valued random vari-
able ξ1 and ξ2, we call stochastic dominance of the first (resp. second) kind the order
relation denoted by ξ1 �(1) ξ2 (resp. ξ �(2) η) such that µ1f ≥ µ2f , for any real
valued and monotone function (resp. monotone and concave) f : R → R, where
L (ξi) = µi, for i = 1, 2.

Clearly, every monetary risk measure ρ : X → R is law-invariant if and only if it
respects the stochastic order of the first kind, i.e ρ(ξ) ≤ ρ(η) when ξ �(1) η. Moreover,
the following result holds also true.

Theorem 3.1 (Song & Young). Every law-invariant convex risk measure ρ : X→ R
respects stochastic dominance of the both kind, that is ρ(ξ) ≤ ρ(η) when ξ �(i) η, for
i = 1, 2. The converse is true when in addition ρ is comonotonic convex, i.e.

ρ(λξ + (1− λ)η) ≤ λρ(ξ) + (1− λ)ρ(η), for any λ ∈ (0, 1),

for any couple of comonotonic variables ξ, η ∈ M(X), i.e. such that ξ = f(ζ) and
η = g(ζ) for some real valued non decreasing functions f and g defined on the real
line, and some ζ ∈M(X).

Proof. See, e.g., Theorem 3.6 in [166].

As a result, when dealing with a law invariant risk measure ρ, properties A1 and
A2 in Definition 3.1, may be restated in terms of the distribution-based functional
Rρ by requiring that
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A1. Rρ(µ) ≤ Rρ(ν) for any µ, ν ∈M(X) such that µ �(1) ν;

A2. Rρ(Σmµ) = Rρ(µ) − m, for any m ∈ R and µ ∈ M(X), where (Σmµ)(A) ,

µ(A−m) denotes the shift operator on the real line.

3.2 CONVEX MEASURES OF RISK

Convex risk measures admit a robust dual representation that allows to regard the
properties A1 and A2 in Definition 3.1 and the property A4 in Definition 3.3 from
the analytical point of view.

Dual representation. Let (Ω,F ) be a measurable space and X a family of F -
measurable real valued functions defined on it. Further, we shall consider a family Y

of finite signed measures µ on (Ω,F ) such that
∫

Ω |ξ|d|µ| <∞ for any ξ ∈ X, where
we write |µ| , µ+ + µ− to denote the total variation measure defined via the Jordan
decomposition µ = µ+ − µ−.

We shall assume X and Y to be locally convex topological paired vector spaces
by considering the duality pairing

〈µ, ξ〉 , −
∫

Ω
ξ(ω)µ(dω), for any ξ ∈ X and any µ ∈ Y. (3.4)

In this connection, throughout we assume that for any ξ ∈ X \ {0} there exist µ ∈ Y

such that 〈µ, ξ〉 6= 0 and conversely for every µ ∈ Y \ {0} there is some ξ ∈ X such
that 〈µ, ξ〉 6= 0.

As a result, every continuous linear functional on X admits the form ξ 7→ 〈µ, ξ〉,
for some µ ∈ Y, and similarly every continuous linear functional on Y may be written
as µ 7→ 〈µ, ξ〉, for some ξ ∈ X. Thus, we are allowed to let Y , X? be the topological
dual of the space X. Besides, X and X? equipped with the relative strong topologies
form paired spaces, when assuming X to be a reflexive Banach space X. Recall that
X is reflexive if it is isometrically isomorphic to its second dual X?? by considering
the evaluation map J : X→ X?? such that the linear functional Jξ defined at ξ ∈ X

satisfies Jξ(µ) , 〈µ, ξ〉, for any µ ∈ X?.
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Let R̄ , R ∪ {±∞}. The following definition will play a relevant role later on.

Definition 3.6 (Proper Functional). A functional ρ : X→ R̄ is said proper if ρ(ξ) >
−∞ and its domain D(ρ) , {ξ ∈ X : ρ(ξ) < +∞} is nonempty.

Classical duality theory provides the robust characterization of a generic functional
in terms of the topological dual of its domain. Given a functional ρ : X → R̄, the
conjugate of ρ is defined as

ρ?(µ) = sup
ξ∈X
{〈µ, ξ〉 − ρ(ξ)}, for any µ ∈ Y.

Similarly, the conjugate ρ?? of the second order is defined as

ρ??(ξ) = sup
µ∈Y
{〈µ, ξ〉 − ρ?(µ)}, for any ξ ∈ X. (3.5)

Theorem 3.2 (Fenchel-Moreau). Suppose that the functional ρ : X → R̄ is convex
and proper, then ρ?? ≡ lsc(ρ), where lsc(ρ) denotes the lower semicontinuous hull of
ρ with respect to the topology of definition on X.

Proof. See, e.g., Theorem 7.71 in [163].

As a direct consequence, if a convex and proper functional ρ : X → R̄ is further
assumed to be lower semicontinuous, then it admits the following representation

ρ(ξ) = sup
µ∈Y
{〈µ, ξ〉 − ρ?(µ)}, for any ξ ∈ X. (3.6)

Conversely, if the identity (3.6) holds for some function ρ?, then ρ is lower semi-
continuous and convex. Moreover, since ρ? is always proper when ρ is proper, lower
semicontinuous and convex, one has that the identity (3.6) may be restated as follows

ρ(ξ) = sup
µ∈D(ρ?)

{〈µ, ξ〉 − ρ?(µ)}, for any ξ ∈ X, (3.7)

where D(ρ?) , {µ ∈ Y : ρ?(µ) < +∞} stands for the domain of the conjugate ρ?.
The following result characterizes the properties A1 and A2 in Definition 3.1 and

the property A4 in Definition 3.3, when dealing with convexity.
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Theorem 3.3. Suppose that ρ : X→ R̄ is proper, lower semicontinuous and convex.
Moreover, let D(ρ?) , {µ ∈ Y : ρ?(µ) < +∞} be the domain of its conjugate. Thus,
we have that

i. Condition A1 in Definition 3.1 holds if and only if every µ ∈ D(ρ?) is nonneg-
ative;

ii. Condition A2 in Definition 3.1 holds if and only if µ(Ω) = 1, for any µ ∈ D(ρ?);

iii. Condition A4 in Definition 3.3 holds if and only if the following representation

ρ(ξ) = sup
µ∈A
〈µ, ξ〉, for any ξ ∈ X, (3.8)

holds true, where A , {µ ∈ Y : 〈µ, ξ〉 < ρ(ξ), for any ξ ∈ X}.

Proof. See, e.g., Theorem 2.2. in [158].

Capital requirement and worst case scenario. The identity (3.8) provides a natural
interpretation when dealing with coherent risk measures. In this respect, fix a prob-
ability measure P on (Ω,F ) and set X , Lp(Ω,F ,P), for some p ∈ (1,+∞). Recall
that, for 1 < p < +∞, the space Lp(Ω,F ,P) turns out to be reflexive and its topo-
logical dual Lp(Ω,F ,P)? is isometrically isomorphic to the space Lp?(Ω,F ,P), where
p? is the conjugate index of p satisfying 1/p+ 1/p? = 1.

As a result, the dual pairing (3.4) is regarded as

〈η, ξ〉 , −
∫

Ω
ξ(ω)η(ω)P(dω), for any ξ ∈ Lp(Ω,F ,P) and η ∈ Lp?(Ω,F ,P),

by identifying any µ ∈ Y with a version of the Radon-Nikodyym derivative dµ/dP.
Then, when dealing with a coherent risk measure ρ : X → R, the identity (3.8) is
recast as follows

ρ(ξ) = sup
η∈A
−E[ξη], for any ξ ∈ Lp(Ω,F ,P), (3.9)
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where A , {η ∈ Lp?(Ω,F ,P) : −E[ξη] < ρ(ξ), for any ξ ∈ Lp(Ω,F ,P)}. Note that
in the same way any function η ∈ A uniquely defines a probability measure µ on
(Ω,F ), such that

∫
Ω
ξ(ω)µ(dω) =

∫
Ω
ξ(ω)η(ω)P(dω), for any ξ ∈ Lp(Ω,F ,P). (3.10)

Any variable η ∈ A may be regarded as the subjective assessment of the riskiness
associated to a given exposure. Therefore, from the regulatory point of view, the
capital requirement ρ(ξ) as given by the identity (3.9) is computed as the expected
loss in the worst case scenario, where the mean is computed with respect to any model
µ whose Radon-Nikodym derivative belongs to the conjugate domain A .

Spectral measures of risk. For any ξ ∈ X and any α ∈ (0, 1) we write F−1
ξ (α) ,

inf{x ∈ R : P(ξ ≤ x) ≥ α} to denote the generalized inverse of the cumulative
function associated to the law of ξ. Recall that, for any α ∈ (0, 1), we call Value-at-
Risk of level α the functional V@Rα : X→ R given by

V@Rα(ξ) , −F−1
ξ (α), for any ξ ∈ X. (3.11)

On the other hand, we call Expected Shortfall of level α the functional ESα : X→
R given by,

ESα(ξ) , 1
α

∫ α

0
V@Rβ(ξ)dβ, for any ξ ∈ X. (3.12)

Note that both the functionals V@Rα and ESα, for any α ∈ (0, 1), are law invariant
monetary risk measures. Moreover, Expected Shortfall is a coherent risk measure
since it is a convex functional, and thus subadditive, cf. [3, 4].

Fix m ∈ N and note that, given αi ∈ (0, 1] and λi ≥ 0 for any i = 1, ...,m
such that ∑m

i=1 λi = 1, the convex combination ∑m
i=1 λiESαi provides a law-invariant

coherent risk measure. Further, given a finite set of law-invariant coherent risk mea-
sures ρ1, ..., ρn, the measure ρ , maxi=1,...,m ρi is again a law-invariant coherent risk
measure. These arguments are generalized by the following result.
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Theorem 3.4 (Kusuoka). Let (Ω,F ,P) be a non atomic probability space and set
X = Lp(Ω,F ,P), for some p ≥ 1. Thus, let ρ : X → R be a law invariant lower-
semicontinuous coherent risk measure. Then, there exists a set N of Borel probability
measures on the unit interval of the real line such that

ρ(ξ) = sup
µ∈N

∫ 1

0
ESα(ξ)µ(dα), for any ξ ∈ X.

Proof. See, e.g., Theorem 6.24 in [163].

For any Borel probability measure on the unit interval [0, 1] of the real line define

ρµ(ξ) ,
∫ 1

0
ESα(ξ)µ(dα), for any ξ ∈ X. (3.13)

Any functional of the form (3.13) turns out to be additive on the class of comonotoic
variables. i.e.

ρµ(ξ + η) = ρµ(ξ) + ρµ(η) (3.14)

for any couple of variables ξ, η ∈ X such that ξ , f(ζ) and η , g(ζ), for some non-
decreasing real valued functions f and g defined on the real line, and some ζ ∈ X.

Comonotonicity is the strongest form of dependence that two random variables
may display. It encodes the fact that no diversification benefits should be expected
when two positions are totally positive dependent. Thus, while convexity formally
encodes diversification, comonotonicity shows which are the limit cases when diversi-
fication may not lead to positive effects. The risk functionals of the form (3.13) have
been introduced by Acerbi [1] and they are usually called spectral measures of risk.

The family of spectral measures of risk coincides with the convex hull generated by
the one-parameter family {ESα : α ∈ [0, 1]}, and it counts all those, and those only,
the coherent law-invariant risk measures that turn out to be comonotonic, i.e. such
that the relation (3.14) is always guaranteed for any couple of comonotonic variables.

3.3 ROBUST RISK ESTIMATION

Let X be a class of real-valued random variables. Furthermore, fix a law invariant
monetary risk measure ρ : X→ R and let Rρ to be the associated distribution based
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risk functional defined by (3.3).

According to the standard procedure, the downside risk of any exposure is assessed
on the basis of the past information. More precisely, the distribution µ ∈M(X) that
represents the discounted net worth of the position at the end of the trading period
is calibrated via the historical data. Thus, the amount Rρ(µ) represents an estimate
of the downside risk related to the measure ρ.

Cont et. al [44] pointed out that risk can be properly assessed only when dealing
with robust functionals, bay considering th Hampel’s notion of qualitative robust-
ness. It refers to the property of the risk estimate to be stable with respect to little
changes affecting the distribution of the financial exposure. In this respect we refer
to the seminal works of Hampel [97, 98] and Huber [102]. Other authors further
developed the notion of qualitative robustness within the theory of risk estimation.
We refer to the work of Krätschmer, Schied and Zähle [114, 115], in which a notion
of qualitative robustness is introduced by considering sequence of independent and
equally distributed random variables. Zähle [186, 184, 185] provided a robustness
characterization for dependent random sequences.

Within the cited works, all the results are provided by considering a refinement
of the weak topology of measure in terms of a certain gauge function that assess
the displacement of the distributions of their tails. This overture is reasonable when
dealing in risk estimation since the weak topology of measure lacks to be sensitive
to the tails of the distributions. i.e. two laws might be quite close with respect to
some metric relative to the weak topology and at the same time display a completely
different behaviour on their tails. On the other hand, many common risk functionals
fails to be qualitative robust with respect to the weak topology of measures.

Orlicz spaces and Orlicz hearts. We shall call Young function any left-continuous non
decreasing convex function φ : [0,∞)→ [0,∞] such that φ(0) = 0 and φ(x) ↑ +∞ as
x ↑ +∞. Note that thanks to the convexity, any Young function is continuous, except
possibly at a single point, where it jumps to +∞. We say that a Young function φ
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satisfies the ∆2-condition if
φ(2x) ≤ Cφ(x), (3.15)

for some constant C > 0 and any large enough x ∈ R.
We write L0(Ω,F ,P) to denote the space of equivalence classes of real valued

random variable defined on (Ω,F ,P), where two random variables are equivalent if
they are equal a.s.

For any given Young function φ, the space Lφ(Ω,F ,P) , {ξ ∈ L0(Ω,F ,P) :
E[φ(k|ξ|)] < ∞, for some k > 0} is called the Orlicz Space associated to φ. The
Orlicz spaces represent a natural generalization to the Lebesgue setting. Moreover,
for any Young function φ we have that (Lφ(Ω,F ,P), ‖ · ‖φ) is a Banach space when
endowed with the Luxemburg norm defined as follows (See, e.g., Theorem 2.1.11 in
[67]):

‖ξ‖φ := inf{λ > 0 : E[φ(|ξ|/λ)] ≤ 1}, for any ξ ∈ Lφ(Ω,F ,P). (3.16)

The space Hφ(Ω,F ,P) , {ξ ∈ L0(Ω,F ,P) : E[φ(k|ξ|)] < ∞, for any k > 0} is
said the Orlicz Heart associated to φ. Here and in the sequel, we shall always assume
any Young function φ to be finite, since Hφ(Ω,F ,P) = {0} and Lφ(Ω,F ,P) =
L∞(Ω,F ,P) whenever φ takes the value +∞. It is easy to prove that

L∞(Ω,F ,P) ⊂ Hφ(Ω,F ,P) ⊂ Lφ(Ω,F ,P) ⊂ L1(Ω,F ,P).

Moreover, these inclusions may be strict, since the following result holds true.

Theorem 3.5. Let φ be a Young function. One has that Hφ(Ω,F ,P) coincides with
Lφ(Ω,F ,P) if and only if the function φ satisfies the ∆2-condition (3.15).

Proof. See, e.g., Theorem 2.1.13 in [67].

The dual representation (3.9) provides the natural tool in order to study convex
risk measure in terms of Orlicz hearts. Indeed, since Hφ(Ω,F ,P) ⊂ L1(Ω,F ,P) it is
possible to study the properties of ρ|Hφ(Ω,F ,P) for the generic risk measure ρ defined on
L1(Ω,F ,P). Moreover, every finite valued convex functional defined on some Olicz
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heart Hφ(Ω,F ,P) turns out to be continuous with respect to the Luxemburg norm
(3.16). These arguments are collected in the following result.

Theorem 3.6 (Filipović & Svindald, Cheridito & Li). Let ρ : L∞(Ω,F ,P) → R̄ be
a low invariant and closed (i.e. proper and lower semicontinuous functional) convex
risk measure, then

i. For any 1 ≤ p ≤ +∞ there exists a unique low invariant closed convex func-
tional ρ̄p : Lp(Ω,F ,P)→ R ∪ {+∞} such that ρ̄1|L∞(Ω,F ,P) ≡ ρ. Moreover,

ρ̄p(ξ) = sup
η∈Lp? (Ω,F ,P)

{〈η, ξ〉 − ρ?(η), } for any ξ ∈ Lp(Ω,F ,P),

where ρ? is the conjugate of ρ. Furthermore, for any 1 ≤ p ≤ +∞ we get
ρ̄p ≡ ρ̄1|Lp(Ω,F ,P).

ii. If there exists a finite Young function φ such that ρ̄1 : L1(Ω,F ,P)→ R is finite
on Hφ(Ω,F ,P), then ρ̄1 is continuous with respect to the Luxemburg norm ‖·‖φ.

Proof. Theorem 3.6 collects the results in [41] and [80].

Throughout, we fix a Young function φ and we set ψ(x) , φ(|x|), for any x ∈ R.
Notice that Mψ

1 (R) , {µ ∈ M1(R) : µψ < ∞} may be represented by the space
Hφ(Ω,F ,P), by identifying any couple of random variables with the same law. As a
direct result, every law-invariant risk measure defined on Hφ(Ω,F ,P) is completely
described by the associated distribution-based risk functional Rρ defined on Mψ

1 (R).
Given any sequence of real valued variables ξ = (ξ1, ξ2, ...) defined on (Ω,F ,P),

we recall that the sequence m1,m2, ... of probability kernels from Ω to R defined by
setting

mn(ω,B) , 1
n

n∑
i=1

δξi(ω)(B), for any ω ∈ Ω and B ∈ B(R), varying n ≥ 1.

(3.17)
is called the empirical process directed by ξ.

Notice that, for any Young function φ, one has that mn(ω, ·) ∈ Mψ
1 (R), for any

n ≥ 1 and any ω ∈ Ω. Thus, given any law invariant risk measure ρ defined on
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Hψ(Ω,F ,P), we write ρ1, ρ2, ... to denote the sequence of real valued random variables
defined by

ρn , Rρ(mn), for any n ≥ 1. (3.18)

We refer to (3.18) as the family of risk estimators associated to the measure ρ and
directed by the sequence ξ. The following result gives sufficient condition for the
convergence of the risk estimators (3.18) when dealing in the stationary and ergodic
setup.

Theorem 3.7. Let φ be a finite Young function and let ξ1, ξ2, ... be an ergodic and
stationary sequence in Hφ(Ω,F ,P). If ρ is a law-invariant convex risk measure on
Hφ(Ω,F ,P), then ρn → ρ(ξ1) a.s. as n→ +∞.

Proof. See Theorem 2.6. in [115].

Qualitative Robustness. Here and in the sequel, let (Ω,F ,P) be a probability space
such that Ω , EN is the space of numerable sequences in E and F = E N is the
σ-algebra generated by the canonical projection ξn : ω 7→ ξn(ω) , ω(n), for any
ω ∈ Ω, varying n ≥ 1. Throughout, we shall call gauge function on E any continuous
function ψ : E → R such that ψ ≥ 1, everywhere on E. Moreover, given a gauge
function ψ on E, we call ψ-weak topology the topology on Mψ

1 (E) generated by the
distance

dψ(µ, ν) , π(µ, ν) +
∣∣∣∣∣
∫
E
ψdµ−

∫
E
ψdν

∣∣∣∣∣, for any µ, ν ∈Mψ
1 (E).

Notice that the gauge function ψ assesses the displacement of the distribution
in Mψ

1 (E) on their tails. On the other hand, when ψ is bounded, one has that
Mψ

1 (E) = M1(E), and the ψ-weak topology reduces to the standard weak topology
on M1(E). We shall discuss the ψ-weak topology in Section 4.2.

Let M be a subspace of M1(E) such that all the empirical measures of the form
n−1∑

i≤n δxi , for (x1, ..., xn) ∈ En, endowed with a metric dM . For any µ ∈ M , we
shall write µN to denote the product measure on (Ω,F ), i.e. such that the variables
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ξ1, ξ2, ... are independent and with the same common law µ. Moreover, when letting
(T,T ) be a complete Borel space, for any τ : M → T we shall write τn = τ(mn), for
any n ≥ 1.

Definition 3.7 (Qualitative Robustness). Fix µ ∈ M . We say τ to be robust at µ
with respect to (dM , π) if for any ε > 0 there exist δ > 0 and n0 ∈ N such that

if ν ∈M with dM(µ, ν) < δ, then π(µN ◦ τ−1
n , νN ◦ τ−1

n ) < ε, for any n ≥ n0.

(3.19)

A function τ : M → T is said robust on M with respect to (dM , π) if it is robust
at every µ ∈M with respect to (dM , π).
When setting M = M1(E), dM = π the Prohorov measure on M1(E) given by (2.3),
T = Rd and for any µ ∈M the measure Pµ = µN to be the prodcut measure on (Ω,F ),
Definition 3.7 boils down to the Hampel definition of robustness, as described in [98].
Cuevas [45] pushed forward the Hampel’s notion of qualitative robustness, by letting
T be a generic Polish space. Krätschmer, Shied and Zähle [114, 115] considered the
notion of qualitative robustness by letting M = Mψ

1 (R), for some gauge funtion ψ

and thus letting dM = dψ.
Note that, for any µ ∈ M1(E), mn ⇒ µ a.s. with respect to the measure µN,

due to Theorem 2.6. Thus, since almost everywhere pointwise convergence implies
convergence in measure, one has that

κµ(mn, µ) , inf
{
ε > 0 : µN

{
ω ∈ Ω : π

(
mn(ω, · ), µ

)
> ε

}
≤ ε

}
→ 0, as n→ +∞,

for any µ ∈M . These arguments lead to the following notion.

Definition 3.8 (UGC property). We shall say that M ⊆ M1(E) admits the UGC
property with respect to dM if

sup
µ∈M

inf
{
ε > 0 : µN

{
ω ∈ Ω : dM

(
mn(ω, · ), µ

)
> ε

}
≤ ε

}
→ 0, as n→ +∞,

(3.20)

Definition 3.8 is taken from [114, 115], and the acronym UGC stands for ”Uni-
formly Glivenko Cantelli”. However, it s worth to be highlighted that while in
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Glivenko-Cantelli theorem the variable ξ1, ξ2, ... that drive the empirical process (3.17)
are assumed to be independent and with the same common distribution, in Definition
3.8 we are not assuming independence.

The space M1(E) admits the UGC property with respect to π, (see, e.g., Lemma
2.4 in [136]). Thus, the space M1(E) admits the UGC property with respect to dψ if
and only if

sup
µ∈M

inf
{
ε > 0 : µN

{
ω ∈ Ω :

∣∣∣∣∣
∫
E
ψ(x)dmn(ω, dx)−

∫
E
ψ(x)µ(dx)

∣∣∣∣∣ > ε

}
≤ ε

}
→ 0,

as n→ +∞. (3.21)

The following result provides a version of Hampel’s theorem assessed in terms of
the ψ-weak topology of measures.

Theorem 3.8. Fix M ⊆Mψ
1 (R) and assume τ : M → T to be continuous at µ ∈M

with respect to the ψ-weak topology. If M satisfies the UGC property then τ is robust
at µ with respect to (dψ, π).

Proof. See, e.g., Theorem 3.2 in [115].

Let dT be some metric on T consistent with T . For a given µ ∈ M1(R), we say
that the sequence τ1, τ2, ... is weakly Pµ-consistent with respect to dT if inf{ε > 0 :
Pµ(dT (τn, τ(µ)) > ε) ≤ ε} → 0, as n→ +∞. The following result provides a converse
of Theorem 3.8.

Corollary 3.1. Let M ⊆ Mψ
1 (R) and fix a functional τ : E → T . Fix δ > 0 and

assume τ1, τ2, ... to be marginal robust at any ν ∈ M such that dψ(µ, ν) < δ. If τ is
robust at µ ∈M , then τ is continuous at µ with respect to the ψ-weak topology.

Robust risk measures. Throughout, we fix a finite Young function φ and we set
ψ(x) = φ(|x|), for any x ∈ R. Notice that the function ψ provides a gauge function
on E. The following result provides a useful characterization of the continuity of the
risk functional Rρ for a given law invariant risk measure ρ, with respect to the ψ
weak topology on Mψ

1 (R).
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Theorem 3.9 (Krätschmer, Schied & Zähle). Let ρ be a convex risk measure defined
on Hφ(Ω,F ,P). The functional Rρ : Mψ

1 (R) → R is continuous with respect to the
ψ-weak topology if and only if φ satisfies the ∆2-condition.

Proof. See, e.g., Theorem 2.8 in [115].

Similarly, a sequence µ1, µ2, ... ∈ Mψ
1 (E) converges to a law µ in the ψ-weak

topology if and only if ‖ξn − ξ‖φ → 0, where φ satisfies the ∆2-condition and the
variables ξ, ξ1, ξ2, ... belong toHψ(Ω,F ,P) and are such that L (ξn) = µn and L (ξ) =
µ. In this respect, notice that these variables satisfying the previous condition always
exists since (Ω,F ,P) is atomless, (cf. [115], Theorem 3.5).

Given a law-invariant convex risk measure ρ : Hφ(Ω,F ,P) → R, let ρ1, ρ2, ... be
the associated sequence of estimators given by (3.18). Thus, Theorem 3.8 combined
with Theorem 3.9 gives the following result.

Corollary 3.2. Let ρ : Hφ(Ω,F ,P)→ R be a law-invariant convex risk measure and
fix M ⊆Mψ

1 (R) that satisfies the UGC property. The functional Rρ is robust on M

with respect to (dψ, π) if and only if φ satisfies the ∆2-condition.

When dealing with financial risk management, for a given M ⊆ Mψ
1 (R) we may

regard any law in M as the expected distribution of a certain financial exposure in
the future. In this respect, it is worth to be highlighted that continuity represents a
property that the risk functional Rρ should reasonably display. Indeed, in this case,
little forecasting mistakes can be controlled by injecting just contained amount of
capital as safety fund. On the other hand, in this case the risk functional Rρ appears
to be robust on any M ⊆ Mψ

1 (R) that satisfy the UGC property with respect to
(dψ, π). This means that little forecasting mistakes only result in little perturbations
of the law of the estimators, provided that the amount of the processed date turns
out to be large enough.

Recall that every convex law-invariant risk measure ρ : L∞(Ω,F ,P)→ R admits
a unique extension ρ̄1 : L1(Ω,F ,P)→ R, and in the particular case in which ρ̄1 takes
finite values on Hφ(Ω,F ,P), for some finite Young function φ, one has that ρ̄1 turns
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out to be continuous with respect to the Luxemburg norm (3.16), thanks to Theorem
3.6. The following result extends these arguments.

Proposition 3.2. Let ρ : L∞(Ω,F ,P) → R be a law-invariant convex risk measure
and hence let ρ̄1 : L1(Ω,F ,P) → R be its unique extension. If φ satisfies the ∆2-
condition, the following statements are equivalent.

i. Rρ̄1 is marginal robust on Mψ
1 (R);

ii. Rρ is marginal robust on M(L∞(Ω,F ,P));

iii. ρ̄1 takes finite values on Hφ(Ω,F ,P).

Proof. See, e.g., Theorem 2.16 in [115].

Degrees of robustness. Here and in the sequel, for any p ∈ [1,+∞) we fix φp(x) , xp/p,
for any x ∈ R+. Notice that φp is a finite Young function and that Hφp(Ω,F ,P) =
Lp(Ω,F ,P). When setting ψp(x) = φp(|x|), for any x ∈ R, since φp satisfies the
∆2-condition for any p ∈ [1,+∞), we have that for any convex law-invariant risk
measure ρ : Lp(Ω,F ,P) → R, the functional Rρ : Mψp

1 (R) → R is continuous with
respect to the ψp-weak topology. In this setup, the ψp-weak topology is generated by
the distance dp given by the following identity, (see e.g. Theorem 7.12 in [180]),

dp(µ, ν) , inf
{(∫

|x1−x2|pλ(dx1, dx2)
)1/p

: λ ∈M1(R×R) with marginals µ and ν

}
,

(3.22)
The metric dp is usually called the Monge-Wasserstein metric of order p. The

following result states that for p = 1, the Wasserstein metric (3.22) may be defined
in terms of the norm (2.3).

Theorem 3.10 (Kantorovich-Rubinstein). For any µ, ν ∈Mψ1
1 (R), one has d1(µ, ν) =

‖µ− ν‖?L.

Proof. See, e.g., Theorem 11.8.2 in [63].
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For p = 1, the distance dp is sometimes called the Gini index. It was studied
by Gini around 1914, and later reviewed by Rachev [150]. This metric arises in the
context of the so-called transportation problems initially posed by Monge [137].

The following definition is taken from [114].

Definition 3.9 (Index of Qualitative Robustness). Given a law-invariant convex risk
measure ρ : L∞(Ω,F ,P)→ R, the quantity iqr(ρ) given by

iqr(ρ) ,
[

inf{p ∈ (0,+∞) : Rρ is robust on M
(
L∞(Ω,F ,P)

)
with respect to (dp, π)}

]−1

(3.23)
is said the index of qualitative robustness associated to ρ.

For any given law-invariant convex risk functional ρ : L∞(Ω,F ,P)→ R, the index
(3.23) in Definition 3.9 may be regarded as a measure of the degrees of robustness
displayed by Rρ. Higher degrees of such an index should represent higher degrees
of robustness. As a result, the dichotomy between classes of robust and not robust
functionals may be replaced by a continuum of different degrees of robustness.
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CHAPTER 4

Empirical Processes and Asymptotic
Stability

In this chapter, we fix a Polish space E and we use E to denote its Borel σ-algebra.
Moreover, we denote the space of probability measures on (E,E ) with M1(E). Let
(Ω,F ,P) be a probability space in which we define Ω , EN to be the family of numer-
able sequences in E, and thus F , E N to be the product σ-algebra on it, that coin-
cides with the σ-algebra generated by the canonical projections ξn : ω 7→ ξn(ω) , ωn,
for any ω ∈ Ω, varying n ≥ 1. We shall refer to the random sequence ξ , (ξ1, ξ2, ...)
as the data process and we shall call empirical process the family of random measures
(mn)n on (E,E ) defined by setting

mn(ω,B) , 1
n

n∑
i=1

δξi(ω)(B), for any ω ∈ Ω and B ∈ E . (4.1)

Let Σ be the shift operator on E and hence define IΣ to be the Σ-invariant σ-
algebra of sets in F , i.e. the class of A ∈ F such that Σ−1(A) = A. Here and
in the sequel, we write υ to denote a regular version of the conditional distribution
P[ξ1 ∈ ·|ξ−1IΣ]. It is worth to be highlighted that since E is Polish and E is its Borel
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σ-algebra, and hence countably generated, the regular version υ always exists and it
is essentially unique (see, e.g., Theorem 10.4.3 and 10.4.6 in [21]). According to this
framework, we get that Theorem 2.8 combined with Theorem 2.9 leads to

mnf → υf, a.s., (4.2)

for any fixed f ∈ Cb(E). Hence, when running f over the space Cb(E), one should
expect that mn ⇒ υ a.s. However, this convergence result is not trivial, since the null
set for the a.s. converge (4.2) may depend on the specific function f and the union
of these sets may cover the entire space Ω.

In this chapter, the problem of the convergence of the sequence (4.1) is assessed
via separability arguments by considering the weak topology of measures at first and
then a certain refinement of it. These arguments allow to introduce a refined notion
of robustness that applies when dealing with stationary sequences in terms of the
random measure υ.

This chapter is based on the original work [75].

4.1 CONVERGENCE OF EMPIRICAL PROCESSES

In this section we study the convergence of the process (4.1) with respect to the
weak topology on M1(E), which has been defined in §2.1 by considering the family of
continuous and bounded functions on E. This characterization may be properly gen-
eralized by considering other functional spaces. In this respect, a generalized notion
of weak topology may be introduced by considering classical duality arguments. How-
ever, we show that any family of bounded and uniformly continuous functions with
some modulus of continuity actually generates a topology on M1(E) that coincides
with the weak topology.

Glivenko-Cantelli classes. Recall that the space Cb(E) endowed with the supremum
norm ‖ · ‖∞ is, in general, not separable. Likewise, the space BL(E) is, in general,
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not separable when considering the topology induced by the norm ‖ · ‖BL(E). Let us
define BL1(E) to be the unit ball in BL(E), i.e. the set of functions f ∈ BL(E)
such that ‖f‖BL(E) ≤ 1.

Proposition 4.1. If the distance d consistent with the topology on E is totally
bounded, then the unit ball BL1(E) is separable for the supremum norm ‖ · ‖∞.

Notice that the ball BL1(E) of BL(E) depends on the actual distance d on E

used in the definition of the norm ‖ · ‖BL(E). In the special case when d is indeed
complete, then E appears to be compact, (cf. [63], Theorem 2.3.1). Thus, since the
family BL1(E) is equicontinuous and uniformly bounded, Ascoli-Arzelá theorem (cf.
[63], Theorem 2.4.7) ensures that BL1(E) is compact with respect to the topology
induced by ‖ · ‖∞, and, consequently, separable. Besides, notice that the distance d
in Proposition 4.1 might fail to be complete, since completeness is not a topological
invariant.

The following proof of Proposition 4.1 is modelled on the ideas contained in the
proof of Thereom 11.4.1 in [63].

Proof of Proposition 4.1. Let Ē be the completion of E with respect to the metric d,
and define BL1(Ē) to be the unit ball in BL(Ē) defined by the norm ‖ · ‖BL(Ē). Fix
g ∈ BL1(E) and denote by ḡ the unique extension of g (see, e.g. Proposition 11.2.3
in [63]) defined on Ē such that ‖ḡ‖BL(Ē) = ‖g‖BL(E) and hence so that ḡ ∈ BL1(Ē).

Note that Ē is compact, since E is assumed to be totally bounded, (cf. [63],
Theorem 2.3.1). Thus, there exists a subset N of BL1(Ē) which is countable and
dense in BL1(Ē) with respect to the supremum norm ‖ · ‖∞. As a direct result, given
g ∈ BL1(E), for any ε > 0 one can find f ∈ N so that ‖ḡ − f‖∞ ≤ ε.

On the other hand, letting f |E be the restriction of f to the domain E, one has
‖g − f |E‖∞ ≤ ‖ḡ − f‖∞ ≤ ε. Hence, the family N|E of the functions in N restricted
to E provides a dense and countable subset of BL1(E) in the norm ‖ · ‖∞.

Let µ be a distribution on (E,E ). A family F of real-valued and E -measurable
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functions defined on E is said to be a µ-Glivenko-Cantelli class (cf. [65, 169]) if

sup{|(mn − µ)f |, f ∈ F} → 0, a.s. as n→ +∞, (4.3)

when the variables ξ1, ξ1, ... are independent with common distribution µ. Moreover,
F is termed a universal Glivenko-Cantelly calss if it is a µ-Glivenko-Cantelli class for
any µ ∈ M1(E). It is worth to be noted that when the underlying triple (Ω,F ,P)
is assumed to be non-atomic, given any µ ∈ M1(E), we can always find a sequence
ξ = (ξ1, ξ2, ...) of independent random elements in (E,E ) such that L (ξn) = µ, for
any n ≥ 1.

Notice that, according to Theorems 2.1 and 2.6 the unit ball BL1(E) of the
space BL(E) of bounded and Lipschitz continuous functions appears to be a univer-
sal Glivenko-Cantelli class, since (4.3) boils down to the convergence of the process
m1,m2, ... with respect to the distance (2.2).

Proposition 4.2. If ξ is stationary, then mn ⇒ υ a.s. as n→ +∞.

Recall that the metric γ defined by (2.2) actually depends on the specific metric
d we consider on the space E. On the other hand, whenever two metrics d and d′

generate the same topological structure on E, with obvious notation the metrics γ
and γ′ induces the same topology on M1(E). Thus, this allows us to define the norm
‖ · ‖BL1(E) by considering the metric on E consistent with its topological structure,
that turns out to be more convenient for our purposes. In particular, recall that there
always exists a metric that renders E totally bounded, (cf. [63], Theorem 2.8.2).

On the other hand, observe that the separability is invariant under different choices
of metrics on E generating the same topology.

Proof of Proposition 4.2. If E is totally bounded, then the unit ball is separable for
the supremum norm, due to Proposition 4.1. Moreover, BL1(E) is a uniformly
bounded family of Borel functions on E. Thus, since BL1(E) forms a universal
Glivenko-Cantelli class, Theorem 1.3 combined with Corollary 1.4 in [169] applies, so
that in particular we have

sup{|(mn − υ)f | : f ∈ BL1(E)} → 0, a.s. as n→ +∞. (4.4)
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The proof now concludes since (4.4) implies that γ(mn, υ)→ 0 a.s., as n→ +∞,
so that a.s. mn → υ in the weak topology, as n→ +∞.

Topologies induced by families of functions. Suppose F to be a class of E -measurable
functions on E and set MF

1(E) , {µ ∈ M1(E) : µ|f | < ∞}. It turns out to be
convenient to understand the space MF

1(E) as a convex subspace of the product
space RF. For this purpose, assume that F separates the points of MF

1(E), i.e. given
any couple µ, ν ∈MF

1(E), one has µ = ν if and only if µf = νf for any f ∈ F. Thus,
we can associate any µ ∈ MF

1(E) to the linear map f ∈ F 7→ µf . As a result, the
space RF induces a topological structure on MF

1(E) in a natural way.

Definition 4.1 (F-weak topology). We call F-weak topology the topology σ(MF
1(E),F)

on MF
1(E) inherited from the product topology defined on RF.

According to Definition 4.1, the F-weak topology is thus the projective topology
on MF

1(E) defined by the linear forms on MF
1(E) belonging to F, i.e. the coarsest

topology on MF
1(E) that renders continuous the maps µ ∈ F 7→ µf . It is worth noting

that, if 〈ca(E),F〉 provides a dual pairing in the duality

〈µ, f〉 = µf, for any µ ∈ ca(E) and f ∈ F, (4.5)

where ca(E) denotes the family of all signed measures of bounded variation on (E,E ),
and MF

1(E) is a σ(ca(E),F)-closed and convex subspace of ca(E), the F-weak topology
on MF

1(E) is nothing but the relativization of σ(ca(E),F) to MF
1(E). Hence, according

to the previous arguments, we also say that σ(MF
1(E),F) is weakly generated by F, or

generated by the duality with F. Moreover, a sequence in MF
1(E) is F-weak convergent,

if it converges with respect to the F-weak topology on MF
1(E).

Notice that the previous arguments do not depend of the actual structure of F,
for which we just required to be some set of E -measurable functions on E. Thus, let
us further assume that F is a linear space and ‖ · ‖F a norm properly defined on it.
We denote by F1 the unit ball in F, i.e. we set F1 , {f ∈ F, ‖f‖F ≤ 1}.
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Given a sequence µ0, µ1, ... in Mψ
1 (E) such that sup{|(µn − µ0)f | : f ∈ F1} → 0,

as n → +∞, then µnf → µ0f , for any f ∈ F, and hence µn → µ0 in the F-weak
topology, as n → +∞. Then, assuming that F1 is a µ-Glivenko Cantelli class, one
has that mn → µ a.s. in the F-weak topology, as n → +∞, whenever the variables
ξ1, ξ2, ... directing the empirical process (mn)n are assumed to be independent with
common law µ ∈ MF

1(E). This fact naturally extends to the case when ξ1, ξ2, ... are
assumed to be stationary.

Proposition 4.3. Assume that F1 is uniformly bounded and equicontinuous, and
(ξn)n is stationary, then mn → υ in the F-weak topology.

Proof. Since (ξn)n is assumed to be stationary, Proposition 4.2 guarantees that mn →
υ a.s. in the weak topology as n → +∞. Hence, since F1 is assumed to be equicon-
tinuous and uniformly bounded, the result follows from Corollary 11.3.4 in [63].

Weak Topology. Notice that when setting F to be the space BL(E) of bounded
and Lipschitz continuous functions on E, Proposition 4.3 boils down to Proposition
4.2. We now show that the same result is obtained by considering any space of
bounded and uniformly continuous functions characterized by a determined modulus
of continuity.

We shall write A(E) to denote the family of bounded and uniformly continuous
functions on E. Given a modulus of continuity κ, for any real valued function f ,
the Lipschitz seminorm related to κ is defined as ‖f‖L,κ , |f(x) − f(y)|/κ(d(x, y)).
Hence, let ‖ · ‖κ , ‖ · ‖∞ + ‖ · ‖L,κ and Aκ,b(E) , {f ∈ A(E) : ‖f‖κ,b < ∞} be the
family of bounded and uniformly continuous functions that displays κ as modulus of
continuity.

Notice that the family of laws µ ∈M1(E) for which µ|f | <∞ for any f ∈ Aκ,b(E)
indeed coincides with M1(E). We define the κ-weak topology to be the weak(-star)
topology generated on M1(E) by the duality of Aκ,b(E).

Lemma 4.1. The space Aκ,b(E) is an algebra of functions and ‖ · ‖κ is a norm on it.

48



Proof. Clearly, Aκ,b(E) is a linear space. Let f, g ∈ Ab,κ(E). To prove that Aκ,b(E)
is indeed an algebra we have to show that fg ∈ Aκ,b(E). Thus, notice that

|f(x)g(x)− f(y)g(y)| ≤ |f(x)(g(x)− g(y))| − |g(y)(f(x)− f(y))|

≤ {‖f‖∞‖g‖L,κ + ‖g‖∞‖f‖L,κ}κ(d(x, y)), (4.6)

hence fg ∈ Aκ,b(E). To conclude, observe that ‖ · ‖κ is a norm since ‖ · ‖L,κ is a
pseudonorm and ‖ · ‖∞ is a norm.

Notice that when the space E is assumed to be compact, the family A(E) indeed
coincides with C(E). In particular, since Aκ,b(E) is an algebra of functions according
to Lemma 4.1, it contains the constant and separates points, i.e. given any distinct
points x, y ∈ E one has g(x) 6= g(y) for some A(E), we have that Stone-Weiertsrass
theorem ([63], Theorem 2.4.11) applies, and the result in Proposition 4.4 boils down
to the following.

Lemma 4.2. If E is compact, then the space Aκ,b(E) is uniformly dense in A(E).

Notice that the space A(E), as well as Aκ,b(E), actually depends on the specific
metric d on E consistent with its topological structure. In particular, the specific
metric d consistent with the topology defined on E may fail to be complete, since
completeness is not a topological invariant. On the other hand, there always exists a
continuous embedding ı : E ↪→ Ē, where the completion Ē of E is metrized by the
distance d̄ satisfying d̄(ıx, ıy) = d(x, y), for any x, y ∈ E, (see e.g. [63], § 2.5).

Lemma 4.3. Any g ∈ A(E) admits a unique extension ḡ ∈ A(Ē). Moreover, one
has ‖g‖∞ = ‖ḡ‖∞.

Proof. For any x ∈ Ē, define ḡ(x) , limn g(xn), where x1, x2, ... is some sequence in E
satisfying xn → x as n → +∞. Easily, the limit is well defined since g(x1), g(x2), ...
is a Cauchy sequence in Ē thanks to the uniformly continuity of g, and hence it
converges since Ē is complete. Moreover, if x(i)

1 , x
(i)
2 , ... is a sequence in E such that

x(i)
n → +∞, for i = 1, 2, then one has that limn g(x(1)

n ) = limn g(x(2)
n ) = ḡ(x) and
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hence the previous definition does not depend on the choice of the sequence x1, x2, ...

in E.
The function ḡ turns out to be uniformly continuous on Ē. Indeed, for any x, y ∈ Ē

let x1, x2, ... and y1, y2, ... be two sequences in E such that xn → x and yn → y, for
n→ +∞. Then, one has that

d̄(ḡ(x), ḡ(y)) ≤ d̄(ḡ(x), g(xn)) + d(g(xn), g(yn)) + d̄(g(yn), ḡ(x)), (4.7)

and hence the uniformly continuity of ḡ follows form the uniformly continuity of g,
provided that n is large enough.

The function ḡ is clearly an extension of g and it is unique. Indeed, if h̄ is another
continuous extension of g in Ē, one should have h̄(xn) → h̄(x), for any sequence
x1, x2, ... in E such that xn → x ∈ Ē, for n → +∞. On the other hand, one has
h̄(xn) = g(xn)→ ḡ(x), for n→ +∞, and hence h̄(x) = ḡ(x) must hold.

Finally, the identity ‖g‖∞ = ‖ḡ‖∞ easily follows from standard continuity argu-
ments.

The following proposition extends the result in Lemma 4.2.

Proposition 4.4. The space Aκ,b(E) is uniformly dense in A(E).

Recall that it is not restrictive to assume that E is totally bounded. Indeed, among
all the metrics on E that are consist with its topological structure, there exists one
that is totally bounded, (cf. [63], Theorem 2.8.2).

Proof of Proposition 4.4. Notice that since E is totally bounded, its completion Ē

appears to be compact. Thus, let g ∈ A(E) and define g ∈ A(Ē) to be its unique
extension provided by Lemma 4.3. According to Lemma 4.2, there exists a sequence
(ḡn)n in Aκ,b(Ē) such that ‖ḡ − ḡn‖∞ → 0, as n→ +∞. According to the definition
of d̄ we have that for any n ≥ 1 the restriction gn , ḡn|E of ḡn to E belongs to Aκ,b(E)
and ‖g − gn‖∞ = ‖ḡ − ḡn‖∞ → 0, as n→ +∞.

Since any uniformly dense subset of A(E) generates the weak topology on M1(E)
by duality (cf. [6], Theorem 15.2), Proposition 4.4 leads to the following result.
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Corollary 4.1. The κ-weak topology coincides with the weak topology on M1(E).

4.2 ψ-WEAK TOPOLOGY OF MEASURES

In many circumstances, the weak topology of measures turns out to be too coarse.
One of the typical problems is that some common functionals on M1(E) endowed
with the weak topology of measures, like for instance the mean, fail to be continuous.
On the other hand, since the weak topology looks at the body of the distributions,
the tail part is completely neglected. This means that two laws may be close with
respect to some metric for the weak convergence and at the same time they may
considerably deviate on their tails. Indeed, recall that the family of Borel measure
with bounded support is weakly dense in M1(E).

Throughout this section we generalize the weak topology of measures by intro-
ducing a stronger notion of topology.

The ψ-weak topology. Let ψ be a continuous function defined on E, satisfying ψ ≥ 1.
Any function of this kind is termed a gauge function on E. Thus, consider the space
Cψ(E) of continuous functions given by

Cψ(E) , {f ∈ C(E) : ‖f/ψ‖∞ <∞}.

The function ψ plays the role of penalizing the displacement of the distributions at
their tails. On the other hand, the space Cψ(E) consists of those continuous functions
whose growth is controlled by ψ. Clearly, such a space boils down to Cb(E) in the
special case when ψ ≡ 1 or simply when ψ is bounded above. Thus, consider the
subspace Mψ

1 (E) of M1(E) given by

Mψ
1 (E) , {µ ∈M1(E) : µψ < +∞}.

Since Mψ
1 (E) is contained in M1(E), it inherits the topological structure provided

by the relativization of the weak topology on M1(E). This relative weak topology
is actually σ(Mψ

1 (E),Cb(E)), the coarsest topology so that for each f ∈ Cb(E), the
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mapping µ ∈Mψ
1 (E) 7→ µf is continuous,(cf. [6], Lemma 2.53). Moreover, the space

Mψ
1 (E) turns out to be separable when endowed with the topology σ(Mψ

1 (E),Cb(E)).
Indeed, notice that if e1, e2, ... is a sequence dense in E, then the family of convex
combinations (with rational weights) of δej is contained in Mψ

1 (E) and it is dense in
M1(E), with respect to Prohorov distance.

On the other hand, we consider on Mψ
1 (E) the topology defined by the duality

with Cψ(E) as follows.

Definition 4.2 (ψ-weak topology). The ψ-weak topology σ(Mψ
1 (E),Cψ(E)) is the

coarsest topology on Mψ
1 (E) that renders continuous the maps µ ∈ Mψ

1 (E) 7→ µf ,
varying f ∈ Cψ(E).

Generally, the ψ-weak topology appears to be finer than the relative weak topology
σ(Mψ

1 (E),Cb(E)). These two topological structures indeed coincide only when ψ ≡ 1
or simply ψ is bounded above. Moreover, when endowed with σ(Mψ

1 (E),Cψ(E)), one
has that Mψ

1 (E) acquires the structure of Polish space (cf. [83], Corollary A.45).
More precisely, the ψ-weak topology may be metrized by the distance dψ defined as
follow, (cf. [114], Lemma 3.4),

dψ(µ, ν) , π(µ, ν) + |(µ− ν)ψ|, for any µ, ν ∈Mψ
1 (E). (4.8)

When looking at the metric defined in (4.8), it is easily to be realized that given
a sequence µ0, µ1, ... in Mψ

1 (E), one has that µn → µ0 in the ψ-weak topology as
n→ +∞ if and only if µn → µ0 in the relative weak topology σ(Mψ

1 (E),Cb(E)) and
µnψ → µ0ψ as n→ +∞.

Memorability Issues. Throughout, we discuss the measurable structure on Mψ
1 (E)

induced by the ψ-weak topology. Thus, define M ψ to be the Borel σ-algebra gen-
erated by the ψ-weak topology σ(Mψ

1 (E),Cψ(E)) on Mψ
1 (E). The following result

characterizes M ψ in terms of the relative weak topology.
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Lemma 4.4. The σ-algebra M ψ is generated by the relative weak topology on Mψ
1 (E),

i.e. σ(Mψ
1 (E),Cb(E)).

Recall that a σ-algebra is said to be (i) countably generated if it is generated by
a countable family of sets and (ii) countably separated if it admits an a countable
family of sets separating points. Moreover, a measurable space is said to be standard
if it is Borel-isomorphic to a Polish space.

Proof of Lemma 4.4. Let us define Bψ to be the Borel σ-algebra associated to the
relative weak topology σ(Mψ

1 (E),Cb(E)). Since the ψ-weak topology is finer than
the weak topology on Mψ

1 (E), one has Bψ ⊆ M ψ. Since Mψ
1 (E) is separable when

endowed with the relative weak topology, the σ-algebra Bψ is countably generated and
countably separated. Indeed, any countable base Bψ of open sets in σ(Mψ

1 (E),Cb(E))
generates the σ-algebra Bψ and separates points, (cf. [21], §6.5).

On the other hand, the space (Mψ
1 (E),M ψ) is standard, and thus, the σ-algebra

M ψ coincides with σ(Bψ), thanks to Theorem 3.3 in [129].

Let us now define M to be the Borel σ-algebra generated by the weak topol-
ogy σ(M1(E),Cb(E)) on M1(E). It is worth to recall that M admits the use-
ful characterization as the σ-algebra on M1(E) generated by the projection maps
πB : µ ∈ M1(E) 7→ µ(B), letting B vary in E , (cf. [90], Proposition 2.2.2). When
looking at Lemma 4.4, one might be tempted to attend that a similar characterization
indeed applies also when considering the σ-algebra M ψ.

Proposition 4.5. The Borel σ-algebra M ψ is generated by the projections πB : µ 7→
µ(B), defined for µ ∈Mψ

1 (E), letting B vary in E .

In order to prove the statement in Proposition 4.5, the following result appears to
be useful.

Lemma 4.5. Let H be a family of functions defined on a set H and taking values in
a measurable space (G,G ). Let φ be a H-valued map defined on some set H0, then
φ−1(σ(H)) = σ(H ◦ φ) on H0, where H ◦ φ , {h ◦ φ : h ∈ H}.
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Proof of Lemma 4.5. First of all, note that φ−1(σ(H)) is a σ-algebra on H0, since the
map φ−1 preserves all the set operations. Thus, the inclusion σ(H ◦ φ) ⊆ φ−1(σ(H))
is immediate, since h ◦ φ is φ−1(σ(H))-measurable for any h ∈ H.

Let now H0 be a σ-algebra onH0 with respect to which h◦φ is (H0,G )-measurable,
for any h ∈ H. Clearly φ−1(σ(H)) ⊆ H0. Thus, the proof concludes by considering
H0 = σ(H ◦ φ).

Proof of Proposition 4.5. Let φ : Mψ
1 (E) ↪→ M1(E) be the inclusion of Mψ

1 (E) into
M1(E) and define H to be the family consisting of the projection maps πB : µ ∈
M1(E) → µ(B), letting B vary in E . The family H ◦ φ , {πB ◦ φ : B ∈ E } consists
of the projections defined on Mψ

1 (E).
Let us define Bψ to be the Borel σ-algebra generated by the relative weak topology

σ(Mψ
1 (E),Cb(E)). The equality Bψ = φ−1(σ(H)) holds true, since σ(H) = M and

Bψ = φ−1(M ). Hence, applying Lemma 4.5, one deduces that Bψ = σ(H ◦ φ). The
stated result now follows from Lemma 4.4.

4.3 STRONG CONSISTENCY OF ESTIMATORS

Later on, we fix a gauge function ψ on E. Notice that mn ∈Mψ
1 (E) a.s. for any n ≥ 1.

From Proposition 4.5 the σ-algebra M ψ is generated by the projection mappings
πB : µ ∈ Mψ

1 (E) 7→ µ(B), varying B ∈ E , then it is possible to look at the process
(mn)n as a random sequence in (Mψ

1 (E),M ψ).
Let T be a Polish space endowed with the related Borel σ-algebra T . We shall

denote by dT the generic metric consistent with its topological structure. Throughout,
we consider a generic functional τ defined on Mψ

1 (E) and taking values in T . More
precisely, any (M ψ,T )-measurable functional is termed a statistic over Mψ

1 (E), and
T its action domain. For the sake of simplicity, we say that τ is ψ-continuous when it
is continuous with respect to the ψ-weak topology on Mψ

1 (E) and the topology defined
on T respectively. Besides, the statistic τ is said to be ψ-uniformly continuous if for
any ε > 0 there exists δ(ε) > 0 such that dt(τ(µ1), τ(µ2)) < ε if dψ(µ1, µ2) < δ(ε).
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Notice that, if τ is ψ-continuous, then any element of the random sequence τ1, τ2, ... in
T obtained by setting τn , τ(mn), for any n ≥ 1, turns out to be (F ,T )-measurable.
In particular, we refer to τ1, τ2, ... as the sequence of estimators induced by τ .

Definition 4.3 (Strong Consistency). If τn → τ(υ) a.s as n→ +∞, we say that the
random sequence (τn)n provides a family of strongly consistent estimators for τ(υ), or
simply that the statistic τ is strongly consistent with respect to the random measure
υ.

Assuming that ξ is stationary, Proposition 4.2 states that mn → υ in the weak
topology as n → +∞ . Hence, the strong consistency of the estimators τn may
be properly achieved by natural arguments involving the continuity of the statistic
τ . Proposition 4.2 may be generalized when considering the ψ-weak topology in a
natural way.

Theorem 4.1. If ξ is stationary and such that L (ξ1) ∈ Mψ
1 (E), then mn → υ a.s.

in the ψ-weak topology, as n→ +∞.

Proof. According to Proposition 4.2, we have that P-almost surely mn → υ in the
relative weak topology, as n→ +∞. Thus, it remains to show that

|(mn − υ)ψ| → 0, a.s. as n→ +∞.

We apply now Theorem 2.8. Using the notation therein, we consider as transfor-
mation T , Σ, the shift operator on EN, and as measurable function f , ψ ◦ ξ1.
Notice that the shift operator T preserves the measure P since ξ is assumed to be
stationary. If we write µ for the common law µ = L (ξ1), then a change of variables
gives that ∫

Ω
fdP =

∫
Ω
ψ(ξ1)dP =

∫
E
ψ(x)P ◦ ξ−1

1 (dx) =
∫
E
ψdµ,

since by hypothesis L (ξ1) = µ ∈Mψ
1 (E), we have

∫
E ψ dµ = µψ < +∞ and therefore

f ∈ L1(Ω,F ,P). Hence, we conclude that

mnψ → E[ψ(ξ1)|ξ−1I ], a.s. as n→ +∞.
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Finally, according to the disintegration theorem (cf. [107], Theorem 5.4), we may
recast the limit variable and write

E[ψ(ξ1)|ξ−1I ] = υψ, a.s.

Notice that since the stationary structure of the sequence ξ implies that L (ξn) =
L (ξ1) for any n ≥ 2, if in addition ξ is ergodic, i.e. its distribution on (EN,E N) is
ergodic with respect to the shift operator Σ on EN, the asymptotic result stated by
Theorem 4.1 boils down to τn → τ(µ), P-almost certainty as n→ +∞, where we set
µ , L (ξ1). Indeed the probability measure P turns out to be trivial on IΣ in such
a case.

The next result is an immediate consequence of Theorem 4.1.

Corollary 4.2 (Strong Consistency). If ξ is stationary and τ : Mψ
1 (E) → T is

ψ-continuous, then the sequence of estimators (τn)n is strongly consistent for τ(υ).

4.4 ROBUSTNESS IN A PERTURBATIVE SETTING

In this section, we introduce a refined notion of robustness in terms of the canonical
random measure associated to a given stationary sequence in E. As a result, a
similar characterization as the one proposed in Theorem 3.8 is recovered in terms of
the modulus of continuity of the statistic τ .

Robustness. Throughout, given any fixed F -measurable endomorphism θ properly
defined over Ω, i.e. a (F ,F )-measurable map θ : Ω → Ω, we write Pθ , P ◦ θ−1

to denote the measure given by the image of P under the action of θ. Moreover, we
shall assume that the measures Pθ and P are equivalent. In this case, we say that the
measure P is quasi-invariant under the action of θ, and we shortly write Pθ ' P.

Recall that, in the case when L (ξ1) ∈Mψ
1 (E), the random measure υ may be un-

derstood as a random element of (Mψ
1 (E),M ψ). Thus, denote by υ◦θ the probability

kernel obtained by setting (υ ◦ θ)(ω,B) , υ(θ(ω), B), for any ω ∈ Ω and B ∈ E .
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Since the metric dψ is clearly M ψ ⊗M ψ-measurable, we are allowed to define

λθ(α) , P{dψ(υ, υ ◦ θ) > α}, for any α ≥ 0. (4.9)

It is worth to be noticed that the map λθ defined in (4.9) depends also on the
probability measure P. For simplicity, we do not explicit this dependence and we
shall use the notation above.

Assume that the statistic τ is uniformly ψ-continuous and that κ is a modulus
of continuity of τ , i.e. a continuous strictly increasing map [0,+∞] → [0,+∞] such
that

dτ (τ(µ1), τ(µ2)) ≤ κ(dψ(µ1, µ2)), for any µ1, µ2 ∈Mψ
1 (E).

Note that, since λθ(α) < κ(α) for α large enough, we are allowed to set

‖θ‖υ,κ , inf{α > 0 : λθ(α) < κ(α)}. (4.10)

Lemma 4.6. If τ is uniformly ψ-continuous and it admits κ as modulus of continuity,
then π(P ◦ τ(υ)−1,Pθ ◦ τ(υ)−1) ≤ κ(‖θ‖υ,κ).

Proof. Let C ∈ T and fix α > 0 such that λθ(α) < κ(α). Since τ is ψ-continuous,
then τ−1(C) ∈ M ψ. In particular, for any A ∈ M ψ, we denote by Aε , {µ ∈
Mψ

1 (E) : dψ(µ, ν) ≤ ε, for some ν ∈ A} the ε-hull of A defined in terms of the metric
dψ.

Notice that [τ−1(C)]α ⊆ τ−1(Cκ(α)) in Mψ
1 (E), since τ is uniformly ψ-continuous

and admits κ as modulus of continuity, where the κ(α)-hull Cκ(α) of C is defined in
terms of the metric dψ. Hence, υ ◦ θ ∈ [τ−1(C)]α implies υ ◦ θ ∈ τ−1(Cκ(α)), and in
particular one has that P{υ ◦ θ ∈ [τ−1(C)]α} ≤ P ◦ τ(υ ◦ θ)−1(Cκ(α)). Thus,

P ◦ τ(υ)−1(C) ≤ P{dψ(υ, υ ◦ θ) > α}+ P{υ ◦ θ ∈ [τ−1(C)]α}

≤ κ(α) + P ◦ τ(υ ◦ θ)−1
(
Cκ(α)

)
.

Then, since the choice of C ∈ T is arbitrary, one has that

π
(
P ◦ τ(υ)−1,P ◦ τ(υ ◦ θ)−1

)
≤ κ(α).
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Hence, since Pθ ◦ τ(υ)−1 = P ◦ τ(υ ◦ θ)−1, the proof is concluded by letting α tend to
‖θ‖υ,κ, while invoking the continuity of κ.

Notice that, in the special case when κ is defined as the identity over (0,+∞),
one has that (4.10) boils down to the Ky Fan type distance χψ(υ, υ ◦ θ) relative to dψ
between υ and υ ◦ θ given by

χψ(υ, υ ◦ θ) , inf{ε > 0 : P(dψ(υ, υ ◦ θ) > ε) ≤ ε}. (4.11)

Here, the random measures υ and υ ◦ θ are to be understood as random elements in
(Mψ

1 (E),M ψ). In particular, when looking at Lemma 4.6, this is the case when τ is
indeed assumed to be a contraction.

Theorem 4.2 (Robustness). Let ξ be stationary and let P be quasi-invariant under
θ. If τ is uniformly ψ-continuous and it admits κ as modulus of continuity, then

lim sup
n≥1

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ κ(‖θ‖υ,κ). (4.12)

Proof. By the triangle inequality we have,

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ π(P ◦ τ−1
n ,P ◦ τ(υ)−1)

+ π(P ◦ τ(υ)−1,Pθ ◦ τ(υ)−1)

+ π(Pθ ◦ τ−1
n ,Pθ ◦ τ(υ)−1).

(4.13)

Since τ is uniformly ψ-continuous and admits κ as modulus of continuity, Lemma
4.6 applies. Thus, from inequality (4.13) we deduce that

lim sup
n≥1

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ κ(‖θ‖υ,κ)

+ lim sup
n≥1

{π(P ◦ τ−1
n ,P ◦ τ(υ)−1) + π(Pθ ◦ τ−1

n ,Pθ ◦ τ(υ)−1)}.
(4.14)

On the other hand, ξ is assumed to be stationary and τ is ψ-continuous. Then,
the result described in Corollary 4.2 guarantees that P-almost surely τn → τ(υ), as
n → +∞, and hence also Pθ-almost surely, as P is assumed to be quasi-invariant
under θ. Thus,

lim sup
n≥1

{π(P ◦ τ−1
n ,P ◦ τ(υ)−1) + π(Pθ ◦ τ−1

n ,Pθ ◦ τ(υ)−1)} = 0.
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Since according to our setup, any path of the process ξ, and hence any element
of the sample space Ω, models the collected values, we may understand the action
of the endomorphism θ as a specific perturbation of the dataset. In this respect, the
function λθ defined in (4.9) gauges the impact of such a perturbation in terms of the
random measure υ. In particular, note that ‖θ‖υ,κ = 0, when θ is chosen to be the
identity over Ω, or more generally when the action of θ does not affect the distribution
of the random measure υ. It is easy to realize that, when the perturbation procedure
encoded by the action of the map θ does not change significantly the random measure
υ in the stochastic sense provided by (4.9), then one should expect ‖θ‖υ,κ to be small.
In particular, this form of continuity is properly assessed in terms of κ. Indeed, in the
particular case when τ admits κ as modulus of continuity, Theorem 4.2 guarantees
that small perturbations at the level of the dataset only result in small perturbations
in terms of the asymptotic law of the family of estimators associate to the statistic
τ . In particular, the impact of the generic perturbation is precisely gauged by the
relation described in (4.12).

Bayesian nonparametrics. At the level of the statistical inference, Theorem 4.2 ad-
mits also a natural interpretation in terms of bayesian analysis. In this respect,
Corollary 4.2, as well as Theorem 4.2, still remains valid when the sequence of projec-
tions ξ1, ξ2, ... is assumed to be exchangeable, since any exchangeable and numerable
random sequence is always stationary, (cf. [106], Proposition 2.2).

On the other hand, when dealing with numerable exchangeable random sequences,
we get that ξ−1I = σ(υ) a.s. thanks to Theorem 2.12. In addition, the σ-algebra σ(υ)
turns out to be P-trivial in the independence setup. In this respect, we are allowed
to recast the limit random variable in Theorem 4.1 by writing υ = P[ξ1 ∈ · |υ], where
the equality is intended in the P-almost surely sense. On the other hand, according
to Theorem 2.11, when dealing with a numerable random sequence ξ = (ξ1, ξ2, ...) in
E, the notion of exchangeability coincides with a conditional form of independence,
i.e. one has that P[ξ ∈ · |υ] = υN a.s.
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Exchangeability provides the main pillar of the Bayesian approach to the inferen-
tial analysis. More precisely, when dealing with the non parametric setup, the law
induced by the random measure υ over the space (Mψ

1 (E),M ψ) may be regarded as
the prior distribution of the statistical model

ξ1, ξ2, ...|υ ∼iid υ,

where the latter form of independence is to be understood in terms of de Finetti’s
theorem. The prior distribution is the main pillar of Bayesian statistics, and it rep-
resents the subjective knowledge before the experiment is conducted.
According to such a formulation, Theorem 4.2 may be regarded as a form of stability
obtained when the prior distribution of the model is forced to change in such a way
that the quasi-invariance of the measure P is guaranteed.

Robustness and back-testing. Here and in the sequel, a scoring function is any map
S : T × E → R such that the function x ∈ E 7→ S(t, x) is integrable with respect
to any distribution µ ∈Mψ

1 (E), for any t ∈ T . The statistic τ is termed elicitable if
there exists a scoring function S : T × E → [0,+∞) such that∫

E
S(τ(µ), x)µ(dx) ≤

∫
E
S(t, x)µ(dx), for any µ ∈Mψ

1 (E) and t ∈ T . (4.15)

and the identity in (4.15) holds if and only if τ(µ) = t.
The notion of elicitability provides a widely discussed aspect in evaluating point

forecasts, since it may be regarded as the dual form of optimality in the point fore-
casting framework. As a consequence, many authors believe that elicitability pro-
vides the natural tool in order to make back-testing. For background see for instance
[81, 93, 142, 189].

Throughout, we shall assume that τ is uniformly continuous with respect to the
functional (µ, ν) 7→ S̃(µ, ν) ,

∫
E S(τ(µ), x)ν(dx) in the sense that

dT (τ(µ), τ(ν)) ≤ κ(S̃(µ, ν)), for any µ, ν ∈Mψ
1 (E), (4.16)

for some non-negative continuous and increasing function κ vanishing at zero.
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Recall that ‖θ‖P,κ as defined in (4.10) implicitly depends on the metric dψ. In a
similar way, if S̃ is (M ψ ⊗M ψ)-measurable, we may define

‖θ‖(1)
P,κ , inf{α > 0 : P{S̃(υ, υ ◦ θ) > α} < κ(α)}. (4.17)

Hence, under condition (4.16) a similar estimate as provided in Lemma 4.6 may be
assessed in terms of (4.17). As a result, the arguments in the proof of Theorem 4.2
still remain valid and give the following result.

Corollary 4.3. Assume that the condition (4.16) holds true. If τ is assumed to be
ψ-continuous, ξ is stationary and P is quasi-invariant under θ, then

lim sup
n≥1

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ κ(‖θ‖(1)
P,κ).

As an example, when considering E and T to be the real line endowed with the
Euclidean metric and ψ the identity, if τ : µ ∈Mψ

1 (E) 7→
∫
R xµ(dx) defines the mean

and S(x, y) , (x− y)2, for any (x, y) ∈ R2, then condition (4.16) is guaranteed when
for instance κ(z) ,

√
z, for any z ≥ 0.

Also, observe also that when ψ is strictly increasing and τ(µ) is defined as the
α-quantile of the law µ ∈ Mψ

1 (E), for some fixed α ∈ (0, 1), and the related scoring
function is given by S(x, y) , (1{x≥y} − α)(ψ(x) − ψ(y)), (see, e.g., Theorem 3.3 in
[93]), condition (4.16) fails for any κ.
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Part II
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CHAPTER 5

Stochastic Integration in Banach Spaces

In the last decades, many results of stochastic integration in Hilbert Spaces have
been generalized to a Banach space framework. A theory of stochastic integration for
processes taking values in Banach spaces has been initially proposed by considering
spaces with martingale type 2. In this respect, we refer to the works developed by
Dettweiler [60, 61], Neidhardt [139] and Ondreját [141]. Some of the cited authors
developed the theory of stochastic integration in the so-called 2-uniformly smooth
Banach spaces. Besides, Pisier [145] proved that the martingale type 2 property is
indeed equivalent to the 2-uniform smoothness. Brzeźniak [28, 29, 30, 27] further
carried on the stochastic integrals of Neidhardt and Dettweiler by providing some
applications to the theory of stochastic partial differential equations.

On a different line, Garling [88] and McConnell [134] exploited the probabilistic
definition of the so-called UMD Banach spaces introduced by Burkholder [32] and
Bourgain [23] to propose a theory of stochastic calculus in this class of spaces. The
ideas proposed by Garling and McConnell have been extensively broadened by Van
Neerven, Veraar and Weis [173, 174, 177]. We refer to [170, 176, 175] and [31] for
the application of the theory of stochastic integration in UMD Banach spaces to the
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study of stochastic partial differential equations.

Motivated by these developments, some authors extended many of the standard
notions of Malliavin calculus to a Banach space framework. We mainly refer to the
work by Maas and van Neerven [128], in which a Clark-Ocone representation formula
is presented when dealing with random variables taking values in a UMD Banach
space. Other extensions of the Clark-Ocone formula may be found within the works
of Mayer-Wolf and Zakai [131, 132], Osswald [143] and Faria, Oliveira and Streit [74].

Thorough, we shall fix a Banach space E and a separable Hilbert space H. The
topological dual of E is written as E∗, while we shall always identify H with its
topological dual H∗ via the Riesz representation theorem. The inner product of any
two elements h1, h2 ∈ H is denoted by 〈h1, h2〉H and the duality pairing of x∗ and
x ∈ E is denoted by 〈x∗, x〉E. All the vector spaces we shall consider are assumed to
be real. We write L(H,E) to denote the space of bounded linear operators from H

to E. The adjoint of the operators in L(H,E) are operators in L(E∗, H).

Given any measurable space (S,S ), recall that a mapping S → E is said to
be simple if it is measurable and takes finitely many values. Further, we shall say
that it is strongly measurable if it is the pointwise limit of a sequence of simple
functions. If (S,S , λ) is a σ-finite measure space, for a given p ∈ (1,+∞) we write
Lp(S;E) to define the linear space of measurable functions f : S → E such that∫
S ‖f‖

p
Edλ < +∞, by identifying those functions that equal λ-almost everywhere.

Endowed with the norm

‖f‖Lp(S;E) ,

{∫
S
‖f‖pEdλ

}1/p

, for any f ∈ Lp(S;E),

the space Lp(S;E) is a Banach space.

Throughout, we fix (Ω,F ,P) to be a reference complete probability space. For
any X ∈ L1(Ω;E) we write E{X} to denote its expected value with respect to P.
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5.1 UMD SPACES AND RADONIFYING OPERATORS

In order to construct a theory of stochastic integration within a Banach space frame-
work, a natural tool is provided by the spaces of the so-called γ-radonifying opera-
tors. This class of operators has been firstly characterized in the works by Gel’Fand
[89], Segal [161] and Gross [96]. Besides, this theory is sound in the particular case
when dealing with a specific class of spaces in which martingale differences are un-
conditional, nowadays known as UMD Banach spaces. This class of spaces was ini-
tially characterized in the works of Burkholder [32] and Bourgain [23]. We refer to
Burkholder’s review article [33] for an overview of the theory of UMD Banach spaces
and its applications in stochastic and harmonic analysis.

Throughout this section we briefly discuss the characterization of the UMD Ba-
nach spaces and we review the main results that arise when considering the class of
γ-radonifying operators.

UMD spaces and martingale type. We call martingale difference sequence in E any
sequence d1, d2, ... that is a difference sequence of a E-valued martingale, i.e. such
that dn = Mn −Mn−1 for n ∈ N, where M0,M1, ... is some E-valued martingale with
M0 = 0 a.s. Further, the sequence d1, d2, ... is said to be a Lp-martingale difference
sequence if the it is a difference sequence of a E-valued Lp-martingale.

Proposition 5.1. Every L2-martingale difference sequence in H is orthogonal in
L2(Ω;H).

Proof. See, e.g. Proposition 12.2. in [171].

We call signs sequence any sequence ε1, ε2, ... such that εn = ±1, for any n ∈ N.
Martingale sequences provide a natural generalization of orthogal sequences. Indeed,
if d1, d2, ... is a L2-martingale sequence in a Hilbert space H and ε1, ε2, ... is a signs
sequence, Proposition 5.1 gives

E
∥∥∥∥∥

n∑
i=1

εidi

∥∥∥∥∥
2

H

= E
∥∥∥∥∥

n∑
i=1

di

∥∥∥∥∥
2

H

, (5.1)
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for any n ∈ N. When dealing with Banach spaces, this property is generalized by the
following definition.

Definition 5.1. A Banach space E is said to be a UMD Banach space if for some
p ∈ (1,+∞) (equivalently, for all p ∈ (1,+∞)) there exists a constant β ≥ 0 such
that for any Lp-martingale difference sequence d1, d2, ... in E and any sign sequence
ε1, ε2, ... one has

E
∥∥∥∥∥

n∑
i=1

εidi

∥∥∥∥∥
p

E

≤ βpE
∥∥∥∥∥

n∑
i=1

di

∥∥∥∥∥
p

E

, (5.2)

for any n ∈ N.

The term ”UMD” stands for ”unconditional martingale differences”. It is worth
to be highlighted that as a direct consequence of Proposition 5.1 every Hilbert space
is a UMD space.

We call Rademacher sequence any sequence r1, r2, ... of independent random vari-
ables taking values ±1 with probability 1/2.

Definition 5.2. Let 1 ≤ p ≤ 2. A Banach space E has type p if there exists a
constant δ such that

E
∥∥∥∥∥

n∑
i=1

rixi

∥∥∥∥∥
p

E

≤ βp
n∑
i=1
‖xi‖pE (5.3)

for any n ∈ N and any finite sequence x1, x2, ..., xn in E.

The last possible constant β in (5.3) is said to be the type p constant of E and
it will be denoted by βp. It is worth to be highlighted that every Banach space has
martingale type 1 and moreover any Hilbert space has martingale type 2.

Radonifying Operators. For any h ∈ H and x ∈ E, we write h ⊗ x to denote the
operator in L(H,E) defined by

(h⊗ x)k , x〈h, k〉H , for any k ∈ H.

Let H ⊗ E denote the linear space of finite rank operators from H to E, i.e. the
operators of the form ∑n

i=1 hi⊗xi, where x1, ..., xn ∈ E and the vectors h1, ..., hn ∈ H
are orthonormal.
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Let γ1, γ2, ... be a sequence of real-valued independent standard Gaussian random
variables and define the norm on H ⊗ E given by∥∥∥∥∥

n∑
i=1

hi ⊗ xi
∥∥∥∥∥
γ(H,E)

,

{
E
∥∥∥∥∥

n∑
i=1

γixi

∥∥∥∥∥
2

γ(H,E)

}1/2

(5.4)

for any finite rank operator ∑n
i=1 hi ⊗ xi.

Definition 5.3. We define the Banach space γ(H,E) as the completion of H ⊗ E
with respect to the norm (5.4).

The space γ(H,E) is an operator ideal in L(H,E), i.e. the following ideal property
holds true.

Lemma 5.1. Let H1 and H2 be Hilbert spaces and E1 and E2 Banach spaces. Let
S ∈ L(H2, H1) and T ∈ L(E1, E2). Then, if ϑ ∈ γ(H1, E1) one has TϑS ∈ γ(H2, E2)
and moreover the following norm equality holds true,

‖TϑS‖γ(H2,E2) ≤ ‖T‖L(E1,E2)‖ϑ‖γ(H1,E1)‖S‖L(H2,H1).

Proof. See, e.g., Theorem 6.2 in [172].

In the case when ϑ ∈ γ(H,E) and x∗ ∈ E∗, we write 〈x∗, ϑ〉E to denote the
H-valued dual pairing between γ(H,E) and E∗, defined by setting 〈x∗, ϑ〉E , ϑ∗x∗,
where ϑ∗ denotes the Banach space adjoint operator of ϑ. On the other hand, from
Lemma 5.1, one has that

‖〈x∗, ϑ〉E‖H ≤ ‖x∗‖E∗‖ϑ‖γ(H,E). (5.5)

We recall that, if E is further assumed to be a Hilbert space, then γ(H,E) boils
down to the space of Hilbert-Schmidt operators mapping H into E. Hence, we have
the natural identifications γ(H,R) = H and γ(R, E) = E, endowed with the related
norms.

Proposition 5.2. Let H be a separable Hilbert space and fix 1 ≤ p < +∞. Then,
the mapping

F ∈ Lp(Ω; γ(H,E)) 7→ (h ∈ H 7→ F (·)h),
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defines the Banach spaces isomorphism

Lp(Ω; γ(H,E)) ' γ(H;Lp(Ω, E)). (5.6)

Proof. See, e.g., Proposition 2.6 in [174].

Wiener space. Throughout, we show the connection between the class of γ-radonifying
operators and the characterization of the Gaussian measures on E induced by a
cylindrical Gaussian measure on H, as obtained by Gross [96] in terms of the so-
called measurable semi-norms on H. The cited work marked the beginning of the
study of the Gaussian measures on Banach spaces.

Let RH be the ring of the cylindrical sets in H, i.e. the collection of the measurable
sets of the form T−1(B), for some T ∈ L(H,Rn), varying B ∈ B(Rn) and n ≥ 1. In
particular, for any T ∈ L(H,Rn), we define 〈·, ·〉T to be the inner product on Rn with
respect to which the operator T is indeed an isometry from (Ker T )⊥ to Rn. Moreover,
for any fixed n ≥ 1, let BT (Rn) be the Borel σ-algebra consistent with 〈·, ·〉T . We
write γ(n) to denote the standard Gaussian measure on the space (Rn,BT (Rn)). The
canonical cylindrical Gaussian measure γH associated to the Hilbert spaceH is defined
as the application

γH(T−1(B)) , γ(n)(B), for any B ∈ BT (Rn). (5.7)

It is well known fact that the application γH generally fails to be countably additive
on RH when the space H is infinite-dimensional, (cf. [160], Corollary of Lemma 6).
Besides, L. Gross [96] proposed to define measure starting from γH , by generalizing
the Wiener’s original construction of the standard Wiener measure on the space of
the paths. Let ‖ · ‖H be a continuous norm on H and define E to be the Banach
space obtained as the completion of H with respect to ‖ · ‖H .

As a direct consequence, there exists a continuous linear injection ı : H → E such
that the projection ı(γH) , γH ◦ı−1 defines a positive definite function on the ring RE

of cylindrical sets in E. Let σ(RE) be the σ-algebra generated by the ring RE and E
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the Borel σ-algebra generated by ‖·‖H on E in the common way. Moreover, note that
E and σ(RE) coincide, since the space E is assumed to be separable. The norm ‖ ·‖H
is called admissible if the application ı(γH) extends to a Borel measure γ on (E,E ).
Gross proved that ‖ · ‖H is always admissible in the case when it is measurable, i.e.
such that given any ε > 0, there exists a finite dimensional projection π0 of H such
that γH{h ∈ H : ‖πh‖ > ε} < ε, for any finite dimensional projection π orthogonal
to π0, (cf. [96], Theorem 1).

It follows directly from (5.7) that the measure γ obtained in such a way is Gaussian
and for any x∗ ∈ E∗, the projection x∗(γ) , γ ◦ (e∗)−1 provides a centered Gaussian
measure on the real line with variance given by ‖x∗‖2

E∗ . The following result gives
that the linear injection ı belongs to the space γ(H,E).

Proposition 5.3. Let ϑ : H → E be a linear operator and γH the canonical Gaussian
cylindrical measure on H. Then, ϑ ∈ γ(H,E) if and only if γH ◦ ϑ−1 extends to a
Gaussian measure on (E,E ).

Proof. See, e.g., Theorem 5.2 jointly with Definition 5.1 in [155].

The triple (E,H, ı) is usually called abstract Wiener space, and H is said the
Cameron-Martin space associated to the measure γ. Moreover, every separable Ba-
nach space E endowed with a Gaussian measure γ always contains a densely embedded
Hilbert space H such that the triple (E,H, γ) forms an abstract Wiener space, (cf.
[160], Theorem 2).

Proposition 5.4. If H has infinite dimension, then γ(H) = 0.

Proof. See, e.g., Theorem 1.3 in [12].

Let Q : E∗ → E be the linear operator defined by

x∗ 7→ Qx∗ ,
∫
E
x〈x∗, x〉γ(dx), for any x∗ ∈ E∗, (5.8)

where the latter integral has to be regarded in the Bochner sense, since the integrand
turns out to be E-valued. Note that Q is positive and symmetric, i.e. such that
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〈x∗, Qx∗〉 ≥ 0 and 〈x∗, Qy∗〉 = 〈Qx∗, y∗〉, for any x∗ and y∗ in E∗. The operator Q is
said to be the covariance operator of γ.

Define H(γ) to be the Hilbert space given by the completion of the range R(E∗)
with respect to the inner product

〈Qx∗1, Qx∗2〉H(γ) , 〈x∗1, Qx∗2〉 for any x∗1, x∗2 ∈ E∗. (5.9)

The space H(γ) is usually called the reproducing kernel Hilbert space generated by γ.
Note that H(γ) is separable since the space E is assumed to separable. Further, the
linear inclusion mapping from the range Q(E∗) to E is easily seen to be continuous
with respect to the inner product (5.9) and the norm in E respectively. Hence, it can
be extended uniquely to a bounded linear injection ıQ : H(γ) → E. On the other
hand, since the support of the measure γ coincides with the entire space E, the range
of ıQ is dense in E. Thus, the operator Q enjoys the decomposition Q = ı∗Q ◦ ıQ,
where the adjoint ı∗Q is also one-to-one with dense range, (cf. [155], §4), i.e.

E∗
ı∗R−→ H(γ)∗ ∼= H(γ) ıR−→ E.

Proposition 5.5. Let ϑ : H → E be a linear and bounded operator. Then, ϑ ∈
γ(H,E) if and only if θ ◦ θ∗ is the covariance operator associate to some Gaussian
measure on E.

Proof. See, e.g., Proposition 1.1 in [169].

5.2 MALLIAVIN CALCULUS

The theory of Malliavin calculus may be traced back to the pioneering work developed
by Malliavin [130], who provided a probabilistic proof of the Hörmander theorem. The
Malliavin calculus naturally generalizes to the Hilbert space framework. We refer
to [40] for an exhaustive accounting applied to the theory of stochastic differential
equation in the infinite dimensional setup. In the framework of Hilbert spaces, details
of this matter may be also found in [80, 95, 121] and the references therein.
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Throughout this section, we discuss the theory of Malliavin calculus and stochastic
integration that has been proposed in the recent years when dealing in a Banach space
setup. In this respect, we manly refer to the works by Mass and van Neerven [128].
Other references are the work of Pronk and Varaar [149] and Maas [127].

Isonormal processes. Recall that an E-valued random variable X is said to be Gaus-
sian if the real valued variable 〈x∗, X〉E is Gaussian, for any x∗ ∈ E∗ . Throughout,
any Gaussian random variable X is assumed to be cantered, i.e. E{X} = 0.

Definition 5.4 (Isonormal Gaussian Process). We call H-isornomal Gaussian pro-
cess on the space (Ω,F ,P) any mapping W : H → L2(Ω) that satisfies the following
properties

(i) the random variable W (h) is Gaussian, for any h ∈H ;

(ii) for any h, k ∈ H one has E{W (h)W (k)} = 〈h, k〉H .

Note that from (ii) in Definition 5.4, one has

E{|W (c1h1 + c2h2)− (c1W (h1) + c2W (h2))|2} = 0,

for any scalar c1, c2 ∈ R and h1, h2 ∈ H,

which implies that the process W is linear. As a consequence, for any h1, ..., hn ∈ H,
the random variables W (h1), ...,W (hn) turn out to be jointly Gaussian and hence
independent if and only if h1, ..., hn ∈ H are orthogonal.

Remark. According to Kolmogorov’s extension theorem, once a separable Hilbert
space H is given, one can always construct a probability space and a H-inonormal
Gaussian process. Indeed, let h1, h2, ... be an orthogonormal system in H and η1, η2, ...

a sequence of independent standard Gaussian real-valued random variables. For any
h ∈ H, set W (h) , ∑

n≥1〈h, hn〉Hηn, where the series converges P-a.s. and in L2(Ω),
since ∑n≥1〈h, hn〉 <∞. The process W verifies the properties in Definition 5.4.
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Given any Banach space E, any isonormal Gaussian process W : H → L2(Ω)
naturally induces a linear mapping W̃ from H ⊗ E to L2(Ω)⊗ E, by setting

W̃ (h⊗ x) , W (h)⊗ x, for any h ∈ H and x ∈ E.

This is made clear by the following result.

Proposition 5.6. Any H-isonormal process W : H → L2(Ω) induces an isometry
W̃ : γ(H,E)→ L2(Ω;E).

Proof. See, e.g., Proposition 3.9 in [172].

The following result provides an useful mapping property of the space γ(H,E).

Proposition 5.7. Every x∗ ∈ E∗ extends to a bounded operator x̃∗ : γ(H,E) → H,
by setting

x̃∗(h⊗ x) , 〈x∗, x〉Hh, for any h⊗ x ∈ H ⊗ E. (5.10)

Moreover, the following diagram commutes

γ(H,E) L2(Ω;E)

H L2(Ω)

W̃

x̃∗ x∗

W

Proof. See, e.g., Proposition 3.12 in [172].

The Malliavin derivative. Throughout, we fix a H-isonormal process W . We write
C∞b (Rn) to denote the the vector space of all bounded and real-valued functions
defined on Rn that have bounded derivative of any order. We call E-valued smooth
random variable any function X : Ω→ E if the following identity holds

X = f(W (h1), ...,W (hn))⊗ x, (5.11)

for some f ∈ C∞b (Rn) and h1, ..., hn ∈H . Furthermore, we say that a smooth random
variable X of the form (5.11) is compactly supported if the the function f is compactly
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supported. The class of smooth E-valued random variables and compactly supported
smooth E-valued random variables will be denoted by S (Ω) ⊗ E and Sc(Ω) ⊗ E,
respectively.

Lemma 5.2. Sc(Ω)⊗ E is dense in Lp(Ω;E), for 1 ≤ p <∞.

Proof. See, e.g., Lemma 3.1. in [128].

Let X be a E-valued smooth random variable of the form (5.11). Then, the
Malliavin derivative of X is defined as the γ(H,E)-valued random variable DX given
by

DX ,
n∑
i=1

∂iψ(W (h1), ...,W (hn))⊗ (hi ⊗ x). (5.12)

Note that this definition naturally extends to the entire space S (Ω)⊗E, by linearity.
Besides, it is worth to be highlighted that the Malliavin derivative (5.12) may be
regarded as an E-valued stochastic process DhX, for h ∈ H , by setting DhX ,

(DX)h.
The following result plays a central role.

Proposition 5.8. Fix p ∈ (1,+∞). The Malliavin derivative D is a closable operator
from Lp(Ω;E) to Lp(Ω; γ(H,E)).

Proof. See, e.g., Proposition 3.3. in [128].

Here and in the sequel, we still denote by D the closure of the Malliavin derivative
D and we write H1,p(E) to denote its domain in Lp(Ω;E), which is a Banach space
when endowed with the graph norm

‖X‖H1,p(E) , {‖X‖pLp(Ω;E) + ‖DX‖pLp(Ω;γ(H,E))}
1/p, for any X ∈ H1,p(E). (5.13)

In this respect the domain H1,p(E) is nothing but the completion of the class of
the smooth E-valued random variables in Lp(Ω;F ) with respect to the norm (5.14).
Besides, it is worth highlighting that the topology induced by the norm (5.14) is finer
than the standard topology associated to Lp(Ω;E); indeed, the two topologies would
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be equivalent only if the Malliavin derivative D were bounded on Lp(Ω;E), which is
not the case in general.

Moreover, for any k ≥ 2, we denote by Dk , D ◦ ... ◦ D the k-fold composition
of the Malliavin derivative operator D : H1,p(E) → Lp(Ω, γ(H,E)). The operator
Dk takes values in the space Lp(Ω; γk(H,E)), where we set γ1(H,E) , γ(H,E) and
γn+1(H,E) , γ(H, γn(H,E)) by recursion for any n ∈ N. The domain Hk,p(E) of
Dk coincides with the closure of the class of smooth E-valued random variables in
Lp(Ω;E) with respect to the norm

‖X‖H1,p(E) ,

{
‖X‖pLp(Ω;E) +

k∑
n=1
‖DnX‖pLp(Ω;γn(H,E))

}1/p

. (5.14)

The following result provides a chain rule for the Malliavin derivative operator.

Proposition 5.9. Let E1 and E2 be Banach spaces. Assume E2 to be a UMD space
and fix p ∈ (1,+∞). Given a Fréchet differentiable function ϕ : E1 → E2 such that its
Frechét derivative ∇ϕ : E → L(E1, E2) is continuous and bounded, if X ∈ H1,p(E1)
then ϕ(X) ∈ H1,p(E2). Moreover, one has

Dϕ(X) = ∇ϕ(X)DX. (5.15)

Proof. See, e.g., Proposition 3.8 in [149].

Moreover, the following product rule will be useful later on

Proposition 5.10. Fix p ∈ (1,+∞) and let q, r ∈ (1,+∞) be such that p−1 + q−1 =
r−1. If X ∈ H1,p(E) and Y ∈ H1,q(E∗) then 〈X∗, X〉E ∈ H1,r(R) and

D〈X∗, X〉E = 〈DX∗, X〉E + 〈X∗, DX〉E. (5.16)

Proof. See, e.g., Lemma 3.6 in [149].

The divergence operator. For any fixed p ∈ (1,+∞), the divergence operator δ is
defined as the part of the adjoint operator D∗ in Lp(Ω; γ(H,E)) which maps into
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Lp(Ω;E). To make this precise, let q ∈ (1,+∞) be the conjugate exponent of p, i.e.
such that p−1 + q−1 = 1. Assume D to be the Malliavin derivative on Lq(Ω;E∗), that
is densely defined as a Lq(Ω; γ(H,E∗))-valued closed operator with domain H1,q(E∗).
Thus, let domp(δ) be the set of X ∈ Lp(Ω; γ(H,E)) for which there exists Z ∈
Lp(Ω;E) such that

E〈X,DY 〉E = E〈Z, Y 〉E, for any Y ∈ H1,p(E∗). (5.17)

The variable Z, when it exists, is uniquely defined and hence we set

δ(X) , Z, for any X ∈ domp(δ).

The divergence operator δ is easily seen to be closed and densely defined (cf. Lemma
4.1 in [128]).

Proposition 5.11. Fix p ∈ (1,+∞) and assume E to be a UMD space. The operator
δ is continuous from H1,p(γ(H,E)) to Lp(Ω;E).

Proof. See, e.g., Proposition 6.10 in [127].

The following result provides a useful commutation relation between the operators
D and δ.

Proposition 5.12. Fix p ∈ (1,+∞) and assume E to be a UMD space. If X ∈
H2,p(γ(H,E)), then δ(X) ∈ H1,p(E). Moreover,

Dδ(X) = X + δ(DX), for any X ∈ H2,p(γ(H,E)). (5.18)

Proof. See, e.g., Proposition 4.4 in in [149].

5.3 STOCHASTIC INTEGRATION

In this Section we briefly present the theory of stochastic integration in UMD Banach
spaces. We mainly refer to the works of van Neerven, Veraar and Weis [174, 177] and
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[178]. In the sequel, we let I denote the unit interval on the real line and thus we
write H = L2(I;H).

Measurablility and representation. Throughout, an E-valued process is a one-parameter
family of E-valued random variables indexed by I. We shall say that a process is
strongly measurable if it consists in a one-parameter family of strongly measurable
random variables. In most cases, we identify the generic E-valued process with the
induced map Ω× I → E.

Any L(H,E)-valued process X , {Xt : t ∈ I} is said to be H-strongly measurable
if the E-valued process Xh , {Xth, t ∈ I} is strongly measurable, for any h ∈
H. Further, we shall say that an H-strongly measurable L(H,E)-valued process X
belongs to H scalarly a.s. if for any x∗ ∈ E∗ the function t ∈ I 7→ Xt(ω)∗x∗ ∈ E
belongs to H for almost any ω ∈ Ω. Such a process is said to represent an H-strongly
measurable L(H , E)-valued variable Z in the special case when for any x ∈ E∗ and
any f ∈H one has

〈x∗, Zf〉E =
∫
I
〈X∗t x∗, ft〉Hdt, a.s. (5.19)

The notion of representation above is taken from [174].
Equivalently, an H-strongly measurable L(H,E)-valued process X which belongs

to H scalarly a.s. represents an H-strongly measurable L(H , E)-valued variable Z
if the following identity holds (cf. [174], Lemma 2.7),

〈x∗, Zf〉E =
∫
I
〈x∗, Xtft〉Edt, a.s., (5.20)

for any x∗ ∈ E∗ and any f ∈H . Thus, given any simple function Y : I → γ(H,E),
we set

IY f ,
∫
I
Ytftdt, for any f ∈H , (5.21)

where the right hand side in (5.21) is defined in an elementary way. The following
embedding result via representation turns out to be convenient.
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Lemma 5.3. If E has type 2, the mapping ı2 : Y 7→ IY given by (5.21) admits an
unique extension to a continuous embedding

ı2 : L2(I, γ(H,E)) ↪→ γ(H , E), (5.22)

with operatorial norm satisfying ‖ı2‖ ≤ β2, where β2 denotes the type 2 constant of
E.

Proof. See, e.g., Lemma 6.1 in [178].

Stochastic integral. Later on, a cylindrical H-Wiener process on Ω is a mapping
W : H → L2(Ω) satisfies the following condition.

(i) For any h ∈ H, the process Wh , {Wth : t ∈ I} is a standard Brownian
motion;

(ii) For any t, s ∈ I and h1, h2 ∈ H, one has that E{Wth1Wsh2} = (s ∧ t)〈h1, h2〉H .

It is worth to be noted that if W is an H -Wiener process, then the process
W : H → L2(Ω) defined by the following identity

Wth , W (1[0,t] ⊗ h), for any t ∈ I and h ∈ H, (5.23)

defines a cylindrical H-Wiener process.
We set GW , {GW

t : t ∈ I} to be the augmented filtration generated by the
H-Wiener process W , i.e. generated by the Brownian motions Wh, varying h ∈ H.
Further, we say that an E-valued process is adapted when it is adapted to the filtration
GW . On the other hand, an H-strongly measurable L(H,E)-valued process X is said
to be adapted if the E-valued process Xh is adapted, for any h ∈ H.

Following [174, 177] and [128], we say that a process X : Ω × I → γ(H,E) is an
elementary adapted process with respect to the filtration GW if it admits the following
representation

Xt =
m∑
i=1

n∑
j=1

1(ti−1,ti](t)1Aij
l∑

k=1
hk ⊗ xijk, for any t ∈ I, (5.24)
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where 0 ≤ t0 < · · · < tn ≤ 1, the sets Aij ∈ Gti−1 are disjoint for each j, and
h1, ...hk ∈ H are orthonormal. Thus, any elementary adapted process defines an
element of Lp(Ω; γ(H , E)), for p ∈ [1,+∞). We write LpGW (Ω; γ(H , E)) to denote
their closure in Lp(Ω; γ(H , E)).

The stochastic integral of an elementary adapted process X of the form (5.24)
with respect to W is defined as the Lp(Ω;E)-valued variable IW (X) defined by

IW (X) ,
∫
I
XtdWt ,

m∑
i=1

n∑
j=1

l∑
k=1

1Aij(Wtihk −Wti−1hk)⊗ xijk. (5.25)

Note that IW (X) does not depend on the choice of the adapted elementary process
X.

The following result provides an extension of the stochastic integral with respect
to W to the entire space LpGW (Ω; γ(H , E)).

Theorem 5.1 (Itô isomorphism). Let E be a UMD space and fix p ∈ (1,+∞). The
mapping X 7→ IW (X) defined by (5.25) admits a unique extension to a bounded
operator

IW : LpGW (Ω; γ(H , E))→ Lp(Ω;E). (5.26)

Moreover, the operator (5.26) defines a isomorphism of Banach spaces.

Proof. See, e.g., Theorem 3.5 in [174].

The following theorem provides a characterization of the class of stochastically
integrable processes.

Theorem 5.2. Let E be a UMD space and fix p ∈ (1,+∞). Further, consider an
H-strongly measurable and adapted L(H,E)-valued process X = {Xt : t ∈ I} that
belongs to Lp(I;H) scalarly. The following assertions are equivalent:

i. There exists a sequence X1, X2, ... of elementary adapted processes such that

a. for any h ∈ H and x∗ ∈ E∗ one has that limn〈x∗, Xnh〉E = 〈x∗, Xh〉E in
measure on I × Ω,
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b. there exists a strongly measurable random variable Y ∈ Lp(Ω;E) satisfying
the following identity

Y = lim
n
IW (Xn), in Lp(Ω;E);

ii. there exists a strongly measurable random variable Y ∈ LP (Ω;E) such that for
any x∗ ∈ E∗ one has

〈x∗, Y 〉E = IW (X∗x∗), in Lp(Ω);

iii. The process X represents an element Z ∈ Lp(Ω; γ(H , E)).

Further, the random variables Y in i. and ii. are uniquely determined and they
coincide as elements of LP (Ω;E). Moreover, the variable Z in point iii. belongs to
the space LpGW (Ω; γ(H , E)) and one has that

Y = IW (Z), in Lp(Ω;E). (5.27)

Proof. See Theorem 3.6 in [174].

Any L(H,E)-valued process X satisfying the equivalent conditions of Theorem
5.2 is said Lp-stochastically integrable and the random variable Y = IW (Z) is called
the stochastic integral of X with respect to W . Further, we shall use the notation

Y = IW (Z) ,
∫
I
XtdWt. (5.28)

Note that by Lemma 5.3 if the space E has type 2 then there exists an inclusion
L2(I, γ(H,E)) ↪→ γ(H , E) and this inclusion is given by representation. Hence,
when dealing with UMD Banach spaces with type 2, from Theorem 5.2 we obtain the
following useful stochastic integrability characterization.

Corollary 5.1. Let E be a UMD space with type 2 and fix p ∈ (1,+∞). Every
H-strongly measurable and adapted process X that belongs to Lp(Ω;L2(I; γ(H,E)))
is Lp-stochastically integrable with respect to W .
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The following result provides a useful series expansion representation of the stochas-
tic integral (5.28).

Proposition 5.13 (Series expansion). Let E be a UMD space and fix p ∈ (1,+∞).
Fix an H-strongly measurable and adapted L(H,E)-valued process X that is stochas-
tically integrable with respect to W . Then, one has that for all h ∈ H the process
Xh , {Xth : t ∈ I} is stochastically integrable with respect to Wh. Further, given an
orthonormal basis h1, h2, ... in H, the following representation holds

IW (X) =
∑
n≥1
IWhn(Xhn), (5.29)

where the series converges unconditionally in Lp(Ω;E).

When considering the H -isonormal process W that satisfies the identity (5.23),
the divergence operator δ associated to the Mallivian derivative operatorD : Lp(Ω;E)→
Lp(Ω; γ(H , E)) turns out to be an extension of the stochastic integral IW . This is
the content of the following theorem.

Theorem 5.3. Let E be a UMD Banach space and fix p ∈ (1,+∞). The space
LpGW (Ω; γ(H , E)) is contained in domp(δ) and

δ(X) = IW (X), for any X ∈ LpGW (Ω; γ(H , E)).

Proof. See, e.g., Theorem 5.4 in [128].

A Clark-Ocone representation. For any step function f : I → γ(H,Lp(Ω;E)), the
mapping πWG defined by the identity

(πGW f)(t) , E{f(t)|GW
t },

where E{·|GW
t } is regarded as a bounded operator defined on γ(H,Lp(Ω;E)). The

mapping πGW admits a unique extension to a bounded operator defined on γ(H , Lp(Ω;E))
and such an extension defines a projection onto the subspace LpGW (Ω; γ(H , E)), (cf.
see Lemma 6.5 in [128]). Throughout, with a slight abuse of notation, we shall denote
the extension of πGW again by πGW .
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Theorem 5.4 (Clark-Ocone representation formula). Let E be a UMD space and fix
p ∈ (1,+∞). The operator πGW ◦D admits a unique extension to a bounded and linear
operator form Lp(Ω,GW

1 ;E) to LpGW (Ω; γ(H , E)). Moreover, the following identity
holds

X = E{X}+ IW ((πG W ◦D)X), for any X ∈ LP (Ω,GW
1 ;E).

Further, the variable (πG W ◦D)X is the unique element Y ∈ LpGW (Ω; γ(H , E)) sat-
isfying X = E{X}+ IW (Y ).

Proof. See, e.g., Theorem 6.7 in [128].

5.4 STOCHASTIC EVOLUTION

In this section we present some useful results regarding the E-valued diffusion process
defined in terms of the stochastic integral with respect to a cylindrical Wiener process.
In this respect, in what follows we always assume E to be a UMD space with type
2. Further, we fix a separable Hilbert space H and an H-cylindrical Wiener process
W toghether with the augmentation GW of the filtration that is generates. We write
h1, h2, ... to denote the generic orthonormal basis in H. Furthermore, we still write
H = L2(I;H). In the sequel, a process X is adapted if it is adapted to the filtration
GW . Moreover, we say X to be stochastically integrable if it is so with respect to W ,
as discussed in the previous section.

Although most of the results we present in this section are known, for convenience,
we prove those ones we could not find in a suitable form in the existing literature.

Stochastic Evolution. Let ξ0 ∈ L2(Ω;E) be a strongly GW
0 -measurable random vari-

able. Consider an adapted and strongly measurable E-valued stochastic process
b = {bt : t ∈ I}, that belongs to L2(Ω;L2(I;E)). Let σ = {σt : t ∈ I} be
some adapted and H-strongly measurable L(H,E)-valued process that belongs to
L2(Ω;L2(I; γ(H,E))). Moreover, we assume that the following conditions hold true,

ξ0 ∈ H1,2(E), b ∈ H1,2(L2(I;E)), σ ∈ H2,2(L2(I; γ(H,E))). (5.30)
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The result below will be useful later on.

Lemma 5.4. The process σ is well defined as an element of L2(Ω; γ(H , E)). More-
over, for k = 1, 2, we have that σ ∈ Hk,2(γ(H , E)), and the following norm inequality
holds,

‖σ‖Hk,2(γ(H ,E)) .E ‖σ‖Hk,2(L2(I,γ(H,E))). (5.31)

Proof. Since the space E is assumed to have type 2, Lemma 5.3 implies that there
exists a continuous and linear embedding

ı2 : L2(I, γ(H,E)) ↪→ γ(H , E),

with operatorial norm satisfying ‖ı2‖ ≤ β2, where β2 denotes the type 2 constant of
E. Thus, the process σ turns out to be well defined as an element of L2(Ω; γ(H , E)).

Moreover, one has ‖ · ‖γ(H ,E) .E ‖ · ‖L2(I;γ(H,E)), and hence for k = 1, 2, the
following inequality holds true,

‖ · ‖Hk,2(γ(H ,E)) .E ‖ · ‖Hk,2(L2(I,γ(H,E))). (5.32)

Thus, since we assumed that σ ∈ H2,2(L2(I; γ(H,E))), from inequality (5.32) we
obtain that σ ∈ H1,2(γ(H , E)).

For any stochastically integrable L(H,R)-valued process, the version of the Itô’s
isometry is regarded as follows.

Lemma 5.5. Let ψ , {ψt : t ∈ I} be an adapted H-strongly measurable and stochas-
tically integrable process, taking values in L(H,R). Then, for any t ∈ I, one has

E
{∣∣∣∣∣
∫ t

0
ψsdWs

∣∣∣∣∣
2}

= E
{∫ t

0
‖ψs‖2

Hds

}
.

Proof. First, notice that Proposition 5.13 implies that, for any n ≥ 1, the process
ψhn , {〈ψt, hn〉H : t ∈ I} is stochastically integrable with respect to Whn , {Wthn :
t ∈ I}, and for any t ∈ I the following representation holds,∫ t

0
ψsdWs =

∑
n≥1

∫ t

0
〈ψs, hn〉HdWshn, (5.33)
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where the convergence of the series in (5.33) is understood in the topology of L2(Ω).
Besides, since the processes Whn and Whm are independent for any n,m ≥ 1

such that n 6= m, jointly with the Itô’s isometry, for any t ∈ I we have that,

E
{∫ t

0
〈ψs, hn〉HdWshn ·

∫ t

0
〈ψs, hm〉HdWshm

}
= δnmE

{∣∣∣∣∣
∫ t

0
〈ψs, hn〉HdWshn

∣∣∣∣∣
2}

= δnmE
{∫ t

0
|〈ψs, hn〉H |2ds

}
,(5.34)

where δnm denotes the Kronecker delta δnm = 1 if n = m and δnm = 0 otherwise.
Thus, we have

E
{∣∣∣∣∣
∫ t

0
ψsdWs

∣∣∣∣∣
2}

(i)= E
{∣∣∣∣∣ ∑

n≥1

∫ t

0
〈ψs, hn〉HdWshn

∣∣∣∣∣
2}

=
∑
n≥1

∑
m≥1

E
{∫ t

0
〈ψs, hn〉HdWshn ·

∫ t

0
〈ψs, hm〉HdWshm

}
(ii)=

∑
n≥1

E
{∫ t

0
|〈ψs, hn〉H |2ds

}

= E
{∫ t

0
‖ψs‖2

Hds

}
,

where in the step (i) we have used the representation (5.33) and in the step (ii) the
identity (5.34).

Lemma 5.6. The process σ is stochastically integrable.

Proof. Since σ ∈ L2(Ω;L2(I; γ(H,E))), then the result follows directly from Corollary
5.1.

We consider the E-valued stochastic process ξ , {ξt : t ∈ I} defined by,

ξt , ξ0 +
∫ t

0
bsds+

∫ t

0
σsdWs, for any t ∈ I. (5.35)

The following result is taken from [149]; we include a proof for convenience.

Lemma 5.7. For any t ∈ I, we have that ξt ∈ H1,2(E).
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First, we prove the following Lemma.

Lemma 5.8. For any t ∈ I, ξt ∈ L2(Ω;E) is well defined. Moreover, we have

sup
t∈I
‖ξt‖2

L2(Ω;E) <∞.

Proof of Lemma 5.8. Since the operator δ is linear and continuous from H1,2(γ(H , E))
to L2(Ω;E) due to Proposition 5.11, then by Lemma 5.4 that

‖δ(σ)‖L2(Ω;E) .E ‖σ‖H1,2(γ(H ,E)) .E ‖σ‖H1,2(L2(I;γ(H,E))).

As a consequence, we obtain

sup
t∈I
‖ξt‖2

L2(Ω;E) ≤ ‖ξ0‖2
L2(Ω;E) + ‖b‖2

L2(Ω;L2(I;E)) + ‖δ(σ)‖2
L2(Ω;E)

.E ‖ξ0‖2
L2(Ω;E) + ‖b‖2

L2(Ω;L2(I;E)) + ‖σ‖2
H1,2(L2(I;γ(H,E))),

and ξt ∈ L2(Ω;E) is well defined, for any t ∈ I.

As in [149], for any t ∈ I, we understand 1[0,t] : H →H as a bounded and linear
operator defined as

h ∈H 7→ (1[0,t]h)(·) , 1[0,t](·)h(·).

Remark 5.1. According to Lemma 5.1, we may regard 1[0,t] as a well defined operator
on γ(H ,H2,2(E)), by setting (1Bϑ)h , ϑ(1Bh), for any ϑ ∈ γ(H ,H1,2(E)).

Proof of Lemma 5.7. Note that by linearity it is enough to prove that δ(1[0,t]σ) ∈
H1,2(E), for any t ∈ I, since ξ0 ∈ H1,2(E) and b ∈ H1,2(L2(I, E)).

First, we may regard σ as an element of γ(H ,H2,2(E)), since from Lemma 5.4 we
have σ ∈ H2,2(γ(H ;E)) and the space H2,2(γ(H , E)) is isometric to γ(H ,H2,2(E)),
(see [149], Theorem 2.9). Thus, according to Remark 5.1 we have that 1[0,t]σ ∈
H2,2(γ(H , E))), for any t ∈ I, and hence that δ(1[0,t]σ) ∈ H1,2(E), by Proposition
5.2.
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Itô Formula. The following lemma introduces the notation for the trace operator
tr(·; ·).

Lemma 5.9. For any for any T ∈ L(E,E∗) and ϑ ∈ γ(H,E), the series

tr(T ;ϑ) ,
∑
n≥1
〈T (ϑhn), ϑhn〉E, (5.36)

converges and its sum does not depend on the choice of the orthonormal basis h1, h2, ...

of H.

Proof. See, e.g., Lemma 2.3 in [31].

Let D be some Banach space. A function ψ : I×E → D is said to be of class C 1,2

if it is differentiable in the first variable and twice continuously Fréchet differentiable
in the second variable and the functions ψ, ∇kψ, for k = 1, 2, and ∇2

2ψ are continuous
on I × E.

Theorem 5.5 (Itô formula). Let E and D be UMD Banach spaces. Moreover, let
ψ : I×E → D be a function of class C 1,2 and ξ be the process defined by (6.2). Then,
for any t ∈ I, the process ∇2ψ(s, ξs)σs, for 0 ≤ s ≤ t, is stochastically integrable and
the following identity holds a.s.

ψ(t, ξt) = ψ(0, ξ0) +
∫ t

0
as(ψ)ds+

∫ t

0
∇2ψ(s, ξs)σsdWs,

where
as(ψ) = ∇1ψ(s, ξs) +∇2ψ(s, ξs)bs + 1

2 tr(∇2
2ψ(s, ξs);σs). (5.37)

Proof. See, e.g., Theorem 2.4 in [31].

The following result provides a useful extension to the Itô formula.

Corollary 5.2. Let E and D be UMD Banach spaces. Consider an adapted and
strongly measurable E∗-valued stochastic process b∗ = {b∗t : t ∈ I}, that belongs to
L2(Ω;L2(I;E∗)). Let σ∗ = {σ∗t : t ∈ I} be some adapted and H-strongly measurable
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L(H,E∗)-valued process that belongs to L2(Ω;L2(I; γ(H,E∗))) and that is stochastic
integrable with respect to W . Thus, let ξ be the process given by the identity (5.35)
and set

ξ∗t , ξ∗0 +
∫ t

0
b∗sds+

∫ t

0
σ∗sdWs. (5.38)

Then, for any t ∈ I, we have

〈ξ∗t , ξt〉E = 〈ξ∗0 , ξ0〉E +
∫ t

0
〈ξ∗s , bs〉E + 〈b∗s, ξs〉Eds

+
∫ t

0
〈ξ∗s , σs〉E + 〈σ∗s , ξs〉E +

∫ t

0

∑
n≥1
〈σ∗shn, σshn〉Eds.

Proof. See, e.g., Corollary 2.6 in [31].
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CHAPTER 6

Portfolio Representation

In portfolio management, one encounters plenty of different situations characterized
by the question of the efficient substitution of a portfolio of market securities with
a simpler one which owns similar risk. Besides, it is reasonable to assume this sim-
pler portfolio to meet certain contingent restrictions. We address this problem with
the term of portfolio representation. For instance, one encounters this question when
defining a hedging strategy subject to policy and budget constraints. Another in-
stance of such a problem is obtained when one seeks to reduce the scale, and hence
the complexity, of a specific portfolio for analysis and management purposes, without
misrepresenting its inherent risk structure.

In this chapter, this problem is addressed by defining a reasonable notion of op-
timality based on a specific comparison criterion. More precisely, we present an
approach consisting in the minimization of a certain risk functional, which gauges the
average discrepancy between the original portfolio and any possible candidate among
all the simpler portfolios representing such an exposure. In particular, the risk is
gauged in terms of the fluctuation of the underlying risk factors within a given time
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horizon. We model the risk factors dynamics as a diffusion process in a certain Ba-
nach space and then we show two different formulations of this functional within the
theory of the stochastic integration in UMD spaces developed by Van Neerven, Veraar
and Weis [173, 174, 177]. The first formulation is shown in terms of the Malliavin
derivative operator. In particular, the criterion we obtain turns out to be similar to
the minimization approach suggested in [110] to address the problem of the optimal
hedging of bond portfolios, in which a refined notion of duration is introduced by
using Malliavin calculus for Gaussian random fields in the Hilbert space framework.
The second formulation is obtained under further conditions on the model and it
mainly involves the diffusive component of the discount curve dynamics.

Finally, we discuss how these arguments may apply to the fixed income market,
by considering an infinite-dimensional dynamics governing the stochastic evolution of
the price curve. We study the case in which an interest rate securities portfolio is
represented by considering a portfolio composed by a single zero coupon bond. As
a direct result, a refined notion of duration is recovered when minimizing the risk
functional above.

We fix E to be a Banach space with type 2 and we write I to denote the unit
interval on the real line. Furthermore, we fix a separable Hilbert space H and an
H-cylindrical Wiener process W . The augmentation of the filtration generated by W
is denoted by GW and we fix H , L2(I;H).

This chapter is based on the original work [79].

6.1 RISK FUNCTIONAL AND OPTIMIZATION

Here and in the sequel, we fix a strongly GW
0 -measurable random variable ξ0 ∈

L2(Ω;E). Further, we consider an adapted and strongly measurable E-valued stochas-
tic process b = {bt : t ∈ I} that belongs to L2(Ω;L2(I;E)), and we fix an adapted
and H-strongly measurable L(H,E)-valued process σ = {σt : t ∈ I} that belongs
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to L2(Ω;L2(I; γ(H,E))). Moreover, all the previous processes are assumed to satisfy
the following conditions,

ξ0 ∈ H1,2(E), b ∈ H1,2(L2(I;E)), σ ∈ H2,2(L2(I; γ(H,E))). (6.1)

Then, we define the E-valued process ξ , {ξt : t ∈ I} by setting

ξt , ξ0 +
∫ t

0
bsds+

∫ t

0
σsdWs, for any t ∈ I. (6.2)

Discrepancy and P-sets. Let D be some UMD Banach space. Recall that a function
ψ : I ×E → D is said to be of class C 1,2 if it is differentiable in the first variable and
twice continuously Fréchet differentiable in the second variable and the functions ψ,
∇kψ, for k = 1, 2, and ∇2

2ψ are continuous on I × E. Moreover, we shall say that ψ
is of class C 1,2

b when in addition the following condition is satisfied

‖∇2ψ‖∞ , sup
(t,x)∈I×E

‖∇2ψ(t, x)‖L(E,D) <∞. (6.3)

Here and in the sequel, we write ∇kψ to denote the derivative of ψ with respect to
the kth component, for any k = 1, 2.

Definition 6.1. We say that a function ψ : I×E → D of class C 1,2 is a BS-function
relative to ξ, if the following condition holds true a.s.

∇1ψ(t, ξt) + 1
2tr(∇2

2ψ(t, ξt);σt) = 0, for any t ∈ I. (6.4)

The result below characterizes the dynamics of the process ψ(t, ξt), for t ∈ I, when
ψ is a BS-function relative to ξ.

Lemma 6.1. Let ψ : I ×E → D be a function of class C 1,2. If ψ is assumed to be a
BS-function relative to ξ, then

ψ(t, ξt) = ψ(0, ξ0) +
∫ t

0
∇2ψ(s, ξs)bsds+

∫ t

0
∇2ψ(s, ξs)σsdWs, a.s., for any t ∈ I.

(6.5)
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Proof. Fix t ∈ I. Since the function ψ is assumed to be of class C 1,2, Theorem 5.5
gives that the process s 7→ ∇2ψ(s, ξs)σs, for s ≤ t, is stochastically integrable and
the following representation holds true,

ψ(t, ξt) = ψ(0, ξ0) +
∫ t

0
as(ψ)ds+

∫ t

0
∇2ψ(s, ξs)σsdWs, a.s. (6.6)

where, for any s ≤ t, we set

as(ψ) , ∇1ψ(s, ξs) +∇2ψ(s, ξs)bs + 1
2tr(∇2

2ψ(s, ξs);σs). (6.7)

Thus, the result follows directly from (6.6) jointly with (6.7), since ψ is assumed
to be a BS-function relative to ξ.

We now characterize certain classes of E∗-valued processes that we shall use later
on.

Definition 6.2. By a P-set relative to ξ we understand any set Φ of E∗-valued and
adapted processes φ , {φt : t ∈ I} such that the following conditions are satisfies:

(i) For any φ ∈ Φ, one has that ‖φ‖∞ <∞, where we set

‖φ‖∞ , inf{C ≥ 0 : ‖φt‖E∗ ≤ C a.s. for any t ∈ I}.

(ii) For any φ ∈ Φ, there exists a function ϕ : I × E → E∗ of class C 1,2
b , such that

φt = ϕ(t, ξt), a.s., for any t ∈ I.

(iii) For any φ ∈ Φ, the following identity holds true a.s.,

〈φt, ξt〉E = 〈φ0, ξ0〉E +
∫ t

0
〈φs, bs〉Eds+

∫ t

0
〈φs, σs〉EdWs, (6.8)

Notice that in Definition 6.2, given any φ ∈ Φ, the variables 〈φt, σt〉E, for t ∈ I,
form an adapted H-valued process. In this particular case, 〈·, ·〉E is thus regarded as
the H-valued dual pairing between γ(H,E) and E∗. Besides, from inequality (5.5),
one has that

‖〈φt, σt〉E‖H ≤ ‖φt‖E∗‖σt‖γ(H,E), a.s., for any t ∈ I. (6.9)
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Definition 6.3. Fix a P-set Φ relative to ξ and consider a function f : I × E → R.
For any φ ∈ Φ, the process F (φ) , {Ft(φ) : t ∈ I} defined by

Ft(φ) , f(t, ξt)− 〈φt, ξt〉E, for any t ∈ I, (6.10)

is said to be the discrepancy process between f and φ relative to ξ.

If not otherwise specified, where a function f : I ×E → R and a P-set Φ relative
to ξ are fixed, for any φ ∈ Φ, we always write F (φ) to denote the discrepancy process
between f and φ relative to ξ.

Lemma 6.2. Let Φ be a P-set relative to ξ and consider a function f : I × E → R.
If f is of class C 1,2

b , then one has that Ft(φ) ∈ L2(Ω), for any t ∈ I and φ ∈ Φ, with

sup
t∈I
‖Ft(φ)‖2

L2(Ω) <∞.

Proof. First, notice that since f(·, 0) is assumed to be continuous on I, we have that

‖f(·, 0)‖∞ , sup
t∈I
|f(t, 0)| < +∞.

Besides, for any t ∈ I, the following inequalities hold true a.s.

|f(t, ξt)|2 ≤ ‖∇2f‖2
∞‖ξt‖2

E + |f(t, 0)|2

≤ ‖∇2f‖2
∞‖ξt‖2

E + ‖f(·, 0)‖2
∞.

Fix φ ∈ Φ, and note that |〈φt, ξt〉E| ≤ ‖φt‖E∗‖ξt‖E a.s. for any t ∈ I. Thus, we obtain

sup
t∈I
‖Ft(φ)‖2

L2(Ω) ≤ (‖∇2f‖2
∞ + ‖φ‖2

∞) sup
t∈I
‖ξt‖2

L2(Ω;E) + ‖f(·, 0)‖2
∞,

and the result holds true since the function f is assumed to be of class C 1,2
b , jointly

with the condition (i) in Definition 6.2 and Lemma 5.8.

Recall that for any random variable X ∈ L2(Ω;E) that is differentiable in the
Malliavin sense, we write DF to denote its Malliavin derivative. As discussed in §5.2,
recall that the Malliavin derivative is regarded as a closed operator D : L2(Ω;E) →
L2(Ω; γ(H , E)) and its domain in L2(Ω;E) is denoted by H1,2(E). Moreover, in the
particular case when E = R we write H1,2 , H1,2(R). The following result will play
a relevant role later on in this section.
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Lemma 6.3. Let Φ be a P-set relative to ξ and f : I × E → R a function of class
C 1,2
b . Then Ft(φ) ∈ H1,2, for any t ∈ I and φ ∈ Φ, with

DFt(φ) = (∇2f(t, ξt)− φt)Dξt, a.s. (6.11)

It is worth to be highlighted that, for any t ∈ I, identity (6.11) is understood as

DFt(φ) = ∇2f(t, ξt)Dξt − 〈φt, Dξt〉E, a.s. (6.12)

In particular, since Dξt ∈ L2(Ω; γ(H , E)), for any t ∈ I, in identity (6.12) we
understand 〈·, ·〉E as the H -valued dual pairing between γ(H , E) and E∗.

Proof of Lemma 6.3. Here and throughout, we fix t ∈ I. First of all, since the func-
tion f is assumed to be of class C 1,2

b and ξt ∈ H1,2(E) thanks to Lemma 5.7, we have
that Proposition 5.9 applies and and we get f(t, ξt) ∈ H1,2, with

Df(t, ξt) = ∇2f(t, ξt)Dξt, a.s. (6.13)

Fix now φ ∈ Φ. According to the assumption (ii) in Definition 6.2, there exists a
function ϕ : I × E → E∗ of class C 1,2

b such that the identity φt = ϕ(t, ξt) holds true
a.s. Thus, according to Theorem 5.5, we obtain that the process ∇2ϕ(s, ξs)σs, for
s ≤ t, is stochastically integrable and the following representation holds a.s.,

ϕ(t, ξt) = ϕ(0, ξ0) +
∫ t

0
as(ϕ)ds+

∫ t

0
χs(ϕ)dWs,

where, for s ≤ t, we set,

as(ϕ) , ∇1ϕ(s, ξs) +∇2ϕ(s, ξs)bs + 1
2tr(∇2

2ϕ(s, ξs);σs);

χs(ϕ) , ∇2ϕ(s, ξs)σs.

Hence, given any orthonormal basis h1, h2, ... in H, the extension of the Itô’s formula
in Corollary 5.2 gives

〈ϕ(t, ξt), ξt〉E = 〈ϕ(0, ξ0), ξ0〉E +
∫ t

0
〈ϕ(s, ξs), bs〉Eds+

∫ t

0
〈ϕ(s, ξs), σs〉EdWs

+
∫ t

0
〈as, ξs〉Eds+

∫ t

0
〈χs, ξs〉EdWs +

∫ t

0

∑
n≥1
〈χshn, σshn〉Eds, a.s. (6.14)
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As a direct consequence, the condition (6.8) jointly with the identity (6.14) implies
that χt = 0 a.s. In particular

∇2ϕ(t, ξt) = 0, a.s. (6.15)

On the other hand, Proposition 5.9 applies and it implies that ϕ(t, ξt) ∈ H1,2(E∗),
with

Dϕ(t, ξt) = ∇2ϕ(t, ξt)Dξt, a.s. (6.16)

Thus, jointly with the identity (6.15), we get

Dϕ(t, ξt) = 0, a.s. (6.17)

On the other hand, the product rule for the Malliavin derivative stated in Propo-
sition 5.9 jointly with (6.17) implies that

D〈ϕ(t, φt), ξt〉E = 〈Dϕ(t, ξt), ξt〉E + 〈ϕ(t, ξt), Dξt〉E, a.s.

= 〈ϕ(t, ξt), Dξt〉E a.s. (6.18)

Then, from the inequality (5.5) and by means of the natural identification γ(H ,R) =
H , we obtain that

‖D〈ϕ(t, ξt), ξt〉E‖2
L2(Ω;H ) = E{‖〈ϕ(t, ξt), Dξt〉E‖2

H }

≤ E{‖ϕ(t, ξt)‖2
E∗‖Dξt‖2

γ(H ,E)}

≤ ‖φ‖2
∞‖Dξt‖2

L2(Ω,γ(H ,E))

Thus, since ξt ∈ H1,2(E) due to Lemma 5.7, we have 〈φt, ξt〉E ∈ H1,2 and hence
Ft(φ) ∈ H1,2. Finally, the identity (6.11) follows by the linearity of the Malliavin
derivative from equations (6.13) and (6.18).

Risk functional. Later on, we introduce a particular functional induced by the dis-
crepancy process (6.10). In the theory of portfolio representation, this process admits
a natural interpretation that we shall discuss in the sequel.
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Definition 6.4. Let Φ be a P-set relative to ξ. Given a function f : I × E → R of
class C 1,2

b , we refer to the functional F : Φ→ R defined by setting

F(φ) ,
∫
I
E{|Ft(φ)− EFt(φ)|2}dt, for any φ ∈ Φ, (6.19)

as the risk functional relative to ξ induced by f over Φ.

If not otherwise specified, where a function f : I ×E → R and a P-set Φ relative
to ξ are fixed, we always use F to denote the risk functional relative to ξ induced by
f over Φ. The following theorem implies that the risk functional (6.19) admits two
different equivalent representations.

Theorem 6.1. Let Φ be a P-set relative to ξ and f : I × E → R a function of class
C 1,2
b . Then,

(i) The functional F admits the following representation

F(φ) =
∫
I
E
{∫ t

0

∥∥∥E{(∇2f(t, ξt)− φt)Dsξt|GW
s }

∥∥∥2

H
ds

}
dt, for any φ ∈ Φ.

(6.20)

(ii) In the special case when f is assumed to be a BS-function relative to ξ and
bt = 0 a.s., for any t ∈ I, the functional F boils down to

F(φ) = E
{∫

I

∥∥∥(∇2f(t, ξt)− φt)σt
∥∥∥2

H
(1− t)dt

}
, for any φ ∈ Φ. (6.21)

It is worth to be noted that, since the process σ takes values in γ(H,E), the right
hand side of the identity (6.21) is understood as follows

(∇2f(s, ξs)− φs)σs , ∇2f(s, ξs)σs − 〈φs, σs〉E,

where 〈·, ·〉E denotes the H-valued dual pairing between γ(H,E) and E∗. The proof
of Theorem 6.1 is based on the following lemma.
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Lemma 6.4. Let Φ be a P-set relative to ξ and f : I × E → R a function of class
C 1,2
b . In the particular case when f is assumed to be a BS-function relative to ξ and

bt = 0 a.s., for any t ∈ I, we have a.s.

Ft(φ) = F0(φ) +
∫ t

0
(∇2f(s, ξs)− φs)σsdWs, (6.22)

for any t ∈ I and φ ∈ Φ.

Proof of Lemma 6.4. Fix t ∈ I. Since the function f is assumed to be a BL-function
relative to ξ, Lemma 6.1 gives that

f(t, ξt) = f(0, ξ0) +
∫ t

0
∇2f(s, ξs)bsds+

∫ t

0
∇2f(s, ξs)σsdWs, a.s.

Thus, for any φ ∈ Φ, from condition (6.8) we get that the variable Ft(φ), for t ∈ I,
admits the following representation,

Ft(φ) = F0(φ) +
∫ t

0
(∇2f(s, ξs)− φs)bsds+

∫ t

0
(∇2f(s, ξs)− φs)σsdWs, a.s. (6.23)

Besides, since bt = 0 a.s., the representation (6.23) boils down to the identity (6.22).

Proof of Theorem 6.1. First, we prove the statement (i). Since f is assumed to be of
class C 1,2

b , from Lemma 6.3 we get that Ft(φ) ∈ H1,2, for any φ ∈ Φ and t ∈ I, and
that

DFt(φ) = (∇2f(t, ξt)− φt)Dξt, a.s. (6.24)

Thus, fix t ∈ I and notice that, since the variable Ft(φ) is GW
t -measurable, Clarke-

Ocone formula in Theorem 5.4 implies that,

Ft(φ)− EFt(φ) =
∫ t

0
E{DsFt(φ)|GW

s }dWs a.s. (6.25)

On the other hand, a direct application of Lemma 5.5 leads to

E
{∣∣∣∣∣
∫ t

0
E{DsFt(φ)|GW

s }dWs

∣∣∣∣∣
2}

= E
{∫ t

0
‖E{DsFt(φ)|GW

s }‖2
Hds

}
. (6.26)
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Then, when recasting the identity (6.26) in terms of the representation (6.24), jointly
with the identity (6.25), we obtain

E{|Ft(φ)− EFt(φ)|2} = E
{∫ t

0
‖E{(∇2f(t, ξt)− φt)Dsξt|GW

s }‖2
Hds

}
. (6.27)

As a result, when integrating both the sides of the identity (6.27) with respect to the
variable t ∈ I, we obtain the representation (6.20).

We now prove the statement (ii). For this purpose, fix φ ∈ Φ and notice that
EFt(φ) = EF0(φ) a.s., for any t ∈ I. Next, since f is assumed to be a BL-function
relative to ξ and bt = 0, a.s. for any t ∈ I, Lemma 6.4 gives that the following
representation holds true a.s.

Ft(φ)− EFt(φ) = F0(φ)− EF0(φ) +
∫ t

0
(∇2f(s, ξs)− φs)σsdWs, for any t ∈ I.

(6.28)
Then, let p(x) = |x|2, for any x ∈ R. According to the representation (6.28), for any
t ∈ I, a direct application of Theorem 5.5 leads to

|Ft(φ)− EFt(φ)|2 = |F0(φ)− EF0(φ)|2

+ 1
2

∫ t

0
tr(∇2p(Fs(φ)− EFs(φ)); (∇2f(s, ξs)− φs)σs)ds+

∫ t

0
κs(φ)dWs, a.s., (6.29)

where, for any s ≤ t, we set

κs(φ) , 2(Fs(φ)− EFs(φ))(∇2f(s, ξs)− φs)σs.

Let h1, h2, ... be an orthonormal basis of H and note that ∇2p(x) = 2, for any
x ∈ R. Then, by definition of the trace operator tr(·; ·), we obtain,

tr(∇2
2p(Fs(φ)− EFs(φ)); (∇2f(s, ξs)− φs)σs) = 2

∑
n≥1

(∇2f(s, ξs)− φs)σshn)2

= 2‖(∇2f(s, ξs)− φs)σs‖2
H .

Notice that E|F0(φ)−EF0(φ)|2 = 0, since F0(φ) is GW
0 -measurable, and hence F0(φ) =

EF0(φ) a.s. Thus, from the identity (6.29) we get

E{|Ft(φ)− EFt(φ)|2} = E
{∫ t

0
‖(∇2f(s, ξs)− φs)σs‖2

Hds

}
. (6.30)
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When integrating in both the sides of the identity (6.30) with respect to t ∈ I, we
obtain the representation (6.21).

Next, we consider the following notion of optimality that we state in general terms.

Definition 6.5. Let Υ be some set and consider a functional G : Υ → R. We call
G-optimal any element υ∗ ∈ Υ that verifies the following inequality

G(υ∗) ≤ G(υ), for any υ ∈ Υ. (6.31)

Discrete representation. Fix a P-set Φ relative to ξ and a function f : I × E → R of
class C 1,2

b . In the particular case when f is a BS-function relative to ξ, the statement
(ii) in Theorem 6.1 implies that that a process φ∗ ∈ Φ is F -optimal if it minimizes
the functional

F(φ) = E
{∫ 1

0
‖(∇2f(t, ξt)− φt)σt‖2

H(1− t)dt
}
, for any φ ∈ Φ. (6.32)

Besides, in the particular case when fixing x∗1, ..., n∗n ∈ E∗ and assuming that for any
φ ∈ Φ there exists β = (β1, ..., βn) ∈ Rn such that the following representation holds
true a.s.

φt =
n∑
i=1

βix
∗
i , for any t ∈ I, (6.33)

the minimization of the functional (6.32) turns out to be analytically tractable, since
it boils down to a quadratic optimization problem. Indeed, when identifying any
process φ ∈ Φ with the element β ∈ Rn that satisfies the identity (6.33), mutatis
mutandis the functional (6.32) may be recast as follows

F(β) =
n∑

ij=1
Aijβiβj − 2

n∑
i=1

Biβi + C, for any β ∈ Rn,
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where, for any i, j = 1, ..., n we set

Aij = E
{∫ 1

0

〈
〈x∗i , σt〉E, 〈x∗j , σt〉E

〉
H

(1− t)dt
}
,

Bi = E
{∫ 1

0

〈
∇2f(t, ξt)σt, 〈x∗i , σt〉E

〉
H

(1− t)dt
}
,

C = E
{∫ 1

0
‖∇2f(t, ξt)σt‖2

H(1− t)dt
}
.

As a result, in the special case when the symmetric matrix A = (Aij)ij turns out
to be positive definite, there is a unique F -optimal element β∗ ∈ Φ. Furthermore,
when defining B , (B1, ..., Bn) ∈ Rn, the element β∗ ∈ Φ is obtained as the solution
the following n-dimensional inverse problem,

Aβ∗ = B.

6.2 THE PORTFOLIO REPRESENTATION PROBLEM

In this section, we discuss how the results presented in Section 6.1 may be used to
address the problem of substituting a financial exposure by some constrained port-
folio, without misrepresenting its performance in terms of the related inherent risk
structure. Here and in the sequel, we always assume that the risk factors of a given
portfolio are represented by tradable observables. These include the market price of
a stock or a commodity itself or some major market benchmark assessing the value
of an entire class of securities, such as the interest rate term structure when dealing
with the fixed income market. In this respect, we only refer to the market risk that
affects the financial exposure. No other types of risk are considered.

Risk factors and financial exposure. Any element of E represents the overall dis-
counted value of the risk factors at a certain time and we regard I as the reference
time interval. For sake of simplicity, we suppose I to define the period of one year,
and any of its fractions to be assessed according to a certain day count convention.
To fix the ideas, when E is chosen to be the Euclidean space of some finite dimension

100



n ∈ N, then the components of any element x = (x1, ..., xn) ∈ E may represent the
discounted market prices of n assets at a certain time. Besides, one may chose E to
be some space of continuous curves and interpret any of its elements as the structure
of the discounted price curve at a certain time.

We suppose the process (6.2) to provide a dynamics for the overall discounted value
of the risk factors. Moreover, we regard any function f : I × E → R of class C 1,2

b as
a fixed financial exposure and we understand the variable f(t, ξt) as its discounted
value at any time t ∈ I. For a fixed P-set Φ relative to ξ, we will interpret any
φ ∈ Φ as the dynamics of a certain portfolio of risk factors managed by the trader.
Hence, we understand the variable 〈φt, ξt〉E as its discounted value at time t ∈ I.
Notice that this term depends on both the overall discounted value of the risk factors
ξt and the portfolio composition φt chosen by the investor. The assumption (ii) in
Definition 6.2 is not merely technical, since the strategy considered by a rational
investor at a certain time should depend on the evolution of the reference market.
On the other hand, for our applications, the identity (iii) in Definition 6.2 generalizes
the well-known self-financing condition.

We regard the risk functional F relative to ξ induced by f over Φ as the error that
occurs when substituting the exposure represented by f with some portfolio within
Φ. Such an error is assessed in terms of the average changes of the difference between
the exposure and the selected portfolio, due to the fluctuation of the underling risk
factors within the period I. In this respect, a portfolio φ∗ ∈ Φ turns out to be F -
optimal when it provides the best representation of the inherent risk of the exposure
f , among all the possible choices within Φ.

Theorem 6.1 shows two different formulations of the functional F in terms of the
operator∇2f , which gauges the sensitivity of the financial exposure to little variations
of the underlying risk factors. In this respect, the optimization of the functional F
may be understood as a notion of portfolio immunization via sensitivities analysis.
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Market prices. We say that a integrable process X , {Xt : t ∈ I} is a market price if

EXt = EX0, for any t ∈ I.

Notice that the process ξ given by the identity (6.2) is a market price when assuming
that bt = 0 a.s., for any t ∈ I.

On the other hand, it is worth to be noted that in the particular case when f is
assumed to be a BS-function relative to ξ and bt = 0 a.s., for any t ∈ I, Lemma 6.1
assures that

Ef(t, ξt) = Ef(0, ξ0), for any t ∈ I.

Thus, when ξ is a market price and the function f turns out to be a BS-function
relative to ξ, one has that also the process f(t, ξt), for any t ∈ I, is a market price.
As a consequence, we may regard Definition 6.1 as a risk-free condition.

On the other hand, under the same hypothesis Lemma 6.4 leads to

EFt(φ) = EF0(φ), for any t ∈ I and φ ∈ Φ.

Hence, in the particular case when f(0, ξ0) = 〈φ0, ξ0〉E a.s., for any φ ∈ Φ, one has
Ft(φ) = 0 a.s. for any t ∈ I and φ ∈ Φ, and the risk functional F induced by f over
Φ boils down to

F(φ) = ‖F (φ)‖2
L2(Ω×I), for any φ ∈ Φ.

This means that when the financial exposure is market valued and it is perfectly
hedged by any portfolio φ ∈ Φ at time t = 0, the F -optimal portfolio φ∗ ∈ Φ is
the one that minimizes the average squared discrepancy with the exposure over time,
based on the underline risk factors fluctuation.

6.3 CONSTRAINED HEDGING AND RESIDUAL RISK

Let f : I × E → R be a function of class C 1,2
b and fix a P-set Φ relative to ξ. As a

consequence of Theorem 6.1, if there exists a process φ∗ ∈ Φ such that the following
identity holds true a.s.

φ∗t = ∇2f(t, ξt), for any t ∈ I, (6.34)
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then φ∗ turns out to be F -optimal, since F(φ∗) = 0 in this case. This fact is consistent
with the sensitivity-based hedging approach for portfolio immunization. We discuss
this interpretation later on.

Sensitivity-based hedging. Assume E to coincide with the Euclidean space R2. Hence,
write 〈·, ·〉E to denote the standard Euclidean product on it and let e = (e1, e2) be
its canonical basis. On the other hand, we assume H to coincide with R and thus we
regard the H-cylindrical process W as a standard one-dimensional Brownian motion.

Given this framework, note that the space γ(H,E) boils down to E itself. Thus,
we may represent the process σ ∈ L2(Ω, L2(I, E)) in terms of its components by
writing σ = (σ1, σ2), where, for any i = 1, 2, the real valued process σi = {σi,t : t ∈ I}
is defined as follows,

σi,t , 〈ei, σt〉E, for any t ∈ I.

Similarly, we write ξi , {ξi,t : t ∈ I}, for i = 1, 2, to denote the components of the
process ξ that are defined by setting

ξi,t , 〈ei, ξt〉E, for t ∈ I. (6.35)

Throughout, we assume that a.s. bt = 0 and σ2,t = 0, for any t ∈ I. Moreover, for
sake of simplicity, we set ξ2,0 = 1 a.s. Then, since for i = 1, 2 the following equality
a.s. holds true due to Theorem 5.2,〈

ei,
∫ t

0
σsdWs

〉
E

=
∫ t

0
〈ei, σs〉EdWs, for any t ∈ I,

we obtain the following representation for the dynamics of the components given in
(6.35),

ξ1,t = ξ1,0 +
∫ t

0
σ1,sdWs, a.s., ξ2,t = 1, a.s. (6.36)

We fix a function f : I × E → R of class C 1,2
b and a P-set Φ relative to ξ. For

any process φ ∈ Φ, we regard the variable φt, for t ∈ I, in terms of its components
defined for i = 1, 2 by the following identity,

φi,t , 〈ei, φt〉E, for any t ∈ I.

103



Proposition 6.1. Let Φ be a P-set relative to ξ. Assume f to be a BL-function
relative to ξ. If the components of the process ξ are given by (6.36), then

F(φ) = E
{∫

I
|(∂x1f(t, ξ1,t, ξ2,t)− φ1,t)σ1,t|2(1− t)dt

}
, for any φ ∈ Φ. (6.37)

Proof. Notice that for any t ∈ I and x = (x1, x2) ∈ E, we may regard ∇2f(t, x) as
an element of E with components,

∇2f(t, x) = (∂x1f(t, x1, x2), ∂x2f(t, x1, x2)),

and thus we may set

∇2f(t, x)y , 〈∇2f(t, x), y〉E, for any y ∈ E.

Since according to the identities (6.36) we have bt = 0 a.s., for any t ∈ I, and f

is a BL-function relative to ξ, then the result follows directly from the statement (ii)
in Theorem 6.1, by noting that σ2,t = 0 a.s., for any t ∈ I.

We may understand the first component of the process ξ as a risk-neutral dynamics
for the discounted price of some risky asset. Besides, we regard its second component
as a risk-neutral model for the discounted value of the bank account. The function
f represents an European contingent claim written on the risky asset and the P-set
Φ relative to ξ stands for the entire class of the hedging portfolios. It is worth to be
noted that in the particular case when there exists a process φ∗ ∈ Φ such that the
following equality holds true a.s.,

φ∗1,t = ∂x1f(t, ξt), for any t ∈ I, (6.38)

then the process φ∗ turns out to be F -optimal, since F(φ∗) = 0 thanks to the rep-
resentation (6.37). In particular, the identity (6.38) corresponds to the so-called
delta-hedging condition for the contingent claim f .

Assume that the first component of the process φ∗ ∈ Φ satisfies the identity (6.38).
Note that, if the following condition holds a.s.

f(0, ξ0) = 〈φ∗0, ξ0〉E, (6.39)
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then F0(φ∗) = 0 a.s. The identity (6.39) implies that the financial exposure is perfectly
hedged by the portfolio φ∗ ∈ Φ at time t = 0.
In this particular case, Lemma 6.4 gives that Ft(φ∗) = 0 a.s., for any t ∈ I, and the
second component of the process φ∗ is thus implicitly determined by the following
identity

φ∗2,t = f(t, ξt)− φ∗1,tξ1,t a.s., for any t ∈ I.

Moreover, it is worth to be noted that within the present setup the identity (6.5)
boils down to

∇1f(t, ξ1,t, ξ2,t) + 1
2∂x1x1f(t, ξ1,t, ξ2,t)σ2

1,t = 0, a.s., for any t ∈ I,

which corresponds to a Black-Scholes type equation, whereby the risk-free rate is set
to be null at any time.

Correlation and residual risk. Throughout, we analyse the case when the set Φ is
defined in such a way that the condition (6.34) may not be fulfilled. This case turns
out to be appealing when the financial exposure and the replication portfolio actually
depends upon two different but correlated risk factors. To see this, assume both E

and H to coincide with the Euclidean space R2. Hence, write 〈·, ·〉E to denote the
standard Euclidean product on it and let e = (e1, e2) be its canonical basis. Further,
fix a constant % ∈ (−1, 1) and assume the inner product 〈·, ·〉H on H to be defined in
such a way that 〈ei, ej〉H = 1, if i = j, and 〈ei, ej〉H = % otherwise. Let f : I×E → R
be the function defined by

f(t, x) = 〈e1, x〉E, for any t ∈ I and x ∈ E. (6.40)

Notice that f is of class C 1,2
b , with ∇2f(t, x) = e1, for any t ∈ I and x ∈ E. Let Φ be

a P-set relative to ξ and assume that for any φ ∈ Φ there exists a real-valued process
φ2 , {φ2,t : t ∈ I} such that the following identity holds true

φt = φ2,te2, a.s., for any t ∈ I. (6.41)

Hence, we identify any φ ∈ Φ with the process φ2 that satisfies the identity (6.41).
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Proposition 6.2. Let f be the function given by the identity (6.40) and Φ a P-set
relative to ξ that verifies the condition (6.41). If bt = 0 a.s., for any t ∈ I, then

F(φ) = E
{∫

I
‖〈e1, σt〉E − φ2,t〈e2, σt〉E‖2

H(1− t)dt
}
, for any φ ∈ Φ. (6.42)

Proof. First of all, notice that ∇1f(t, x) = 0 and ∇2
2f(t, x) = 0, for any t ∈ I and

x ∈ I. Hence, the function f appears to be a BS-function relative to ξ. Moreover,
note that

∇2f(t, ξt)σt = 〈e1, σt〉E, for any t ∈ I.

and for any φ ∈ Φ, and that

〈φt, σt〉E = φ2,t〈e2, σt〉E, for any t ∈ I.

Then, the result follows directly from Theorem 6.1.

Since it is not possible to find a version of the process ∇2f(t, ξt), for t ∈ I, that
belongs to Φ, then the condition (6.34) may not be recovered. Moreover, the following
result provides an explicit characterization of a F -optimal process in this case.

Proposition 6.3. Let f be the function given by the identity (6.40) and Φ a P-set
relative to ξ that verifies the condition (6.41). If bt = 0 a.s., for any t ∈ I, then the
process φ∗ ∈ Φ defined by

φ∗2,t = %(σ1,t/σ2,t), for any t ∈ I, (6.43)

turns out to be F-optimal, where for i = 1, 2 the real valued process σi , {σi,t : t ∈ I}
is such that

〈ei, σt〉E = σi,tei, for any t ∈ I. (6.44)

Proof. Notice that Proposition 6.2 applies and the functional F admits the represen-
tation given in (6.42). On the other hand, a direct computation shows for any t ∈ I,
one has

‖〈e1, σt〉E − φ2,t〈e2, σt〉E‖2
H = σ2

1,t − 2%φ2,tσ1,tσ2,t + φ2
2,tσ

2
2,t, (6.45)

106



which consists in a quadratic form in terms of φ2,t, that attends its minimum at

φ2,t = %(σ1,t/σ2,t).

Thus, when letting t run over I, the process φ∗ ∈ Φ defined by identity (6.43)
satisfies F(φ∗) ≤ F(φ), for any φ ∈ Φ, and hence it turns out to be F -optimal.

Notice that the H-Wiener process W may be understood as a 2-dimensional
Wiener process, whose components Wi, for i = 1, 2, are defined by

Wi,t , Wtei, for any t ∈ I, (6.46)

with % as their instantaneous correlation, since

E{Wte1 ·Wte2} = 〈e1, e2〉Ht = %t, for any t ∈ I.

Thus, we may understand the components of the process ξ as the dynamics of the
discounted prices of two correlated risky assets. In this case, a perfect hedge may not
be recovered. Indeed, notice that given φ∗ ∈ Φ as defined by the identity (6.43), the
quantity F(φ∗) is strictly positive for % < 1 and it vanishes for % = 1, which is the
particular case when the two assets appear to be completely correlated. Then, we
may interpret F(φ∗) as the residual hedging risk.

6.4 INTEREST RATES SECURITIES PORTFOLIOS

In this section we take a close look at the problem of seeking an optimal representation
of some fixed income portfolio by considering a portfolio of zero coupon bonds. Recall
that a zero coupon bond is a contract that pays one unit of a certain currency at some
maturity future date. We make the assumption to deal with idealized bonds that are
unaffected by credit risk. i.e. the payment at the maturity date is made by the issuer
of the bond.

We fix T , (1,+∞). Thus, we suppose that there exists a market valued bond
maturing at any future time T ∈ T , and we write pt(T ) to denote its risk-neutral
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discounted price at time t ∈ I. Moreover, we refer to the function T ∈ T 7→ pt(T )
as the discounted price curve at time t ∈ I. It is worth to be highlighted that we let
the variable T to run over T , since we only deal with those bonds that do not expire
within the first year.

Price curve dynamics. Throughout, we assume E to be represented by some space of
continuous and real-valued functions defined on T . We also assume the evaluation
functional δT to be continuous and bounded on E, for any T ∈ T . On the other hand,
in order to capture the feature of any maturity specific-risk, it may be reasonable to
let H be infinite dimensional. An instance of this setup is the one suggested by
Carmona and Tehranchi [39], by considering the space introduced in the following
definition.

Definition 6.6. Let w : T → R+ be a positive and increasing function. We write
Hw to denote the space of absolutely continuous functions x : T → R with x(s)→ 0,
as s→ +∞, and such that ∫

T
x′(s)2w(s)ds < +∞,

where x′ stands for the weak derivative of x.

When endowed with the norm

‖x‖Hw ,

{
x(1)2 +

∫
T
x′(s)2w(s)ds

}1/2

, for any x ∈ Hw,

the space Hw turns out to be a Hilbert space, as reported in the Lemma below. In
this respect, we recall that any Hilbert space is also a UMD Banach space with type
2.

Lemma 6.5. Let w : T → R+ be a positive and increasing function such that∫
T
w(s)−1ds < +∞, (6.47)

then Hw is a separable Hilbert space and the evaluation functional δT is continuous
and bounded on Hw, for any T ∈ T .

108



Proof. See, e.g., Proposition 6.3 in [40].

Here and in the sequel, we regard any element of E as the possible structure of the
discounted price curve at a certain time. More precisely, we assume the risk-neutral
dynamics of the discounted price curve to be governed by a certain adapted E-valued
process p = {pt : t ∈ I}. In this respect, let σ = {σt : t ∈ I} be an adapted H-strongly
measurable process such that σ ∈ H2,2(L2(I; γ(H,E))), and assume p0 ∈ H1,2(E) to
be some strongly GW

0 -measurable random variable. Then, we set

pt = p0 +
∫ t

0
σsdWs, for any t ∈ I. (6.48)

Besides, let δT ∈ E∗ be the evaluation functional at T ∈ T and notice that

pt(T ) = 〈δT , pt〉E, for any t ∈ I.

Thus, we may interpret δT as a portfolio composed by a zero coupon bond expiring
at time T ∈ T , and since the following equality a.s. holds true thanks to Theorem
5.2, 〈

δT ,
∫ t

0
σsdWs

〉
E

=
∫ t

0
〈δT , σs〉EdWs, for any t ∈ I,

the identity (6.48) leads to the representation of the risk-neutral dynamics for the
discounted price of the bond expiring at T given by

pt(T ) = p0(T ) +
∫ t

0
σs(T )dWs, for any t ∈ I, (6.49)

where for notation simplicity we set σt(T ) , 〈δT , σs〉E.

Risk functional and portfolio duration. Let f : I ×E → R be a function of class C 1,2
b

and fix a P-set Φ relative to the process p given by the identity (6.48). We assume
that for any φ ∈ Φ there exists some T ∈ T , such that

φt = α(T )δT , a.s., for any t ∈ I, (6.50)

where
α(T ) = p0(T )−1f(0, p0). (6.51)
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As a direct result, we may write Φ = T by identifying any process φ ∈ Φ with T ∈ T

such that the condition (6.50) is satisfied.

Proposition 6.4. Let f : I × E → R be a function of class C 1,2
b and the process p

be given by (6.48). Let Φ be a P-set relative to p, whose elements satisfy the identity
(6.50). If f is a BS-function relative to p, then

F(T ) = E
{∫

I

∥∥∥(∇2f(t, pt)σt − α(T )σt(T )
∥∥∥2

H
(1− t)dt

}
, for any T ∈ T . (6.52)

Proof. The result follows directly form the statement (ii) in Theorem 6.1. Indeed,
identify the process p with ξ, and notice that in the present case one has bt = 0 a.s.,
for any t ∈ I.

We may understand the variable f(t, pt) as the discounted value of a certain
interest rate securities portfolio at time t ∈ I. We interpret any φ ∈ Φ as the
dynamics of a certain portfolio composed by a single bond relative to a fixed maturity
and nominal given by the identity (6.51). Thus, we suppose the variable 〈φt, pt〉E to
assess its risk-neutral discounted value at time t ∈ I. It is worth to be noted that the
condition (6.51) is reasonable, since it guarantees that

f(0, p0) = 〈φ0, p0〉E,

and hence that any φ ∈ Φ provides a perfect hedge relative to the portfolio represented
by f at time t = 0. We may understand the E∗-valued variable ∇2f(t, ξt) as a notion
of duration of the portfolio f at time t ∈ I, since it may represent the sensitivity of
the portfolio to small changes in the structure of the price curve at time t ∈ I. In
this respect, notice that if f is a BS-function relative to p and there exists T ∗ ∈ T

such that
∇2f(t, pt) = α(T ∗)δT ∗ a.s., for any t ∈ I,

then the representation (6.52) gives F(T ∗) = 0, and hence T ∗ turns out to be F -
optimal. In this respect, when the financial exposure f is market valued, we may
regard any F -optimal T ∗ ∈ T as a notion of the related duration.
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Figure 6.1: Visual representation of the functional (6.53) when considering the model
(6.54) for the short-rate dynamics. More precisely, the line represents the functional
(6.53) for any bond maturity T ∈ (1, 10), the value of which is assessed by the left side
vertical axis. The right side vertical axis assesses the nominals of the bonds within
the fixed portfolio, that are represented by the vertical bars in the figure. The model
(6.54) has been simulated with the parameters a1 = 0.12, a2 = 0.1, σ1 = 0.16 and
σ2 = 0.15. For sake of simplicity, we considered the case ϕ(t) = ϕ1 + ϕ2t, for any
t ∈ I, where ϕ1 = 0.01 and ϕ2 = 0.15. Finally, we set % = −0.01.

Numerical example. Figure 6.1 provides a visual representation of the functional
(6.52), when considering a fixed portfolio constituted by three bonds with different
nominals and maturities, and whose risk-neutral discounted value at time t ∈ I is
given by

f(t, pt) =
∑

k=1,2,3
αkpt(Tk),

where αk ∈ R and Tk ∈ T , for k = 1, 2, 3. In particular, the vertical bars stand
for the nominal αk of the bond related to any maturity Tk. The value of any αk is
assessed by the scale on the right side vertical axis of the figure. The line shows the
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behaviour of the functional,

F(T ) , E
{∫

I

∥∥∥∥∥ ∑
k=1,2,3

αkσt(Tk)− α(T )σt(T )
∥∥∥∥∥

2

H

(1− t)dt
}
, for T ∈ T , (6.53)

that is derived form (6.52) and whose values are assessed by the scale reported on the
left side vertical axis of the graph.

We considered a correlated two-additive-factor Gaussian model governing the evo-
lution of the short-rate process. More precisely, let (W1,W2) be a two-dimensional
Wiener process with some instantaneous correlation % ∈ (−1, 1). The risk-neutral
dynamics of the instantaneous-short-rate r , {rt : t ∈ I} is given by

rt , χ1,t + χ2,t + ϕ(t), for any t ∈ I,

where for i = 1, 2 the process χi , {χi,t : t ∈ I} is given by the following Vasicek-type
model,

χi,t = χi,0 −
∫ t

0
aiχi,tdt+

∫ t

0
σidWi,t, for any t ∈ I, (6.54)

for some given positive parameters ai and σi jointly with the initial condition χi,0 ∈
R+, and where t ∈ I 7→ ϕ(t) is some deterministic function. We refer to Section 4.2.
in [25] for all the details.

This model is analytically tractable enough to write down an explicit formula for
the discounted price curve in terms of the short-rate factors (6.54), and hence to
determine an analytical expression for the process σ by considering standard calculus
techniques. For any T ∈ T , the value F(T ) has been obtained as a combination of
the Monte Carlo simulation of the factors (6.54) jointly with the the discretization of
the integral related to the time variable t ∈ I. All the details of the simulation are
collected in the caption of Figure 6.1.
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CHAPTER 7

Optimal Model Points Portfolio

European insurance companies are required to assess the value of their portfolios as
well as to carry on the sensitivity analysis aimed at demonstrating the compliance of
their models, by considering the cash flow projections on a policy-by-policy approach.
Besides, they are allowed to compute these projections by replacing any homogeneous
group of policies with some suitable representative contracts, usually known as the
related model points. All this, in order to speed up this process, that is usually carried
out on a daily basis, since the complexity of the entire portfolio may lead to long
computational times. This procedure is permitted under suitable conditions in such
a way that the inherent risk structure of the original portfolio is not misrepresented.
We refer to [68] for further details.

In this chapter, we assess the problem of determining an optimal model points
portfolio related to some fixed policies portfolio by applying the results discussed in
Chapter 6. In particular, we characterize the models points associated to a given
life insurance portfolio as the set of policies that minimizes a certain risk functional
that we introduce in a similar manner as the one presented in §6.1. As a particular
instance, we show how these arguments apply when considering a portfolio of whole
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life insurance policies.

This chapter is based on the original work:

[79] Enrico Ferri. Optimal Model Points Portfolio in Life Insurance. arXiv:1808.00866,
2018.

7.1 LIFE INSURANCE MODEL POINTS PORTFOLIO

Life insurance contracts usually provide either a stream of cash flow during the lifetime
of the policyholder or a unique lump sum benefit that is paid upon the death of the
insured and under certain conditions. According to the clauses of the contract, other
events like the appearance of a terminal illness may also lead to an early payment.
The contract is alive when the policyholder pays a specific premium, that depending
upon the case may be either regular or as one initial lump sum.

We do not consider the specific characteristics of the contract and we assume to
deal with some idealized life insurance policy that is unaffected by credit risk, i.e.
the insurance company always guarantees the entire benefit that is provided for in
the contract. Furthermore, we do not analyse the revenues received by the insurance
company and thus we do not take into account the premium payments associated the
contract such as any further expenses that are responsibility of the client.

Let X be some set in which any element x ∈X represents a contract. To fix the
ideas, any x ∈ X may collect typical characteristics such as age and gender of the
policy owner, cancellation option, etc. In other terms, any element x ∈ X identifies
a class of policies that is labelled by considering certain suitable characteristics. We
make the convenient assumption that there exists a market value of the contract
relative to any x ∈X .

Model points portfolios. In the sequel, we fix a UMD Banach space U that is repre-
sented by some space of real valued functions defined on X . We write U∗ to denote
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the topological dual of U . The duality pairing between U and U∗ is denoted by 〈·, ·〉U .
Moreover, we assume the evaluation functional δx to be continuous and bounded on
U , for any x ∈X . Thus, we write X ∗ to denote the subsets of U∗ defined by setting

X ∗ , span{δx : x ∈X }, (7.1)

where the closure in (7.1) is understood with respect to the topology of U∗. Moreover,
we fix a subset Y ∗ ⊆X ∗.

Definition 7.1. Let v ∈ X ∗ and consider a U -valued process z , {zt : t ∈ I}. For
any w ∈ Y ∗, the process Vt(w) , {Vt(w) : t ∈ I} defined by setting

Vt(w) = 〈v, zt〉U − 〈w, zt〉U , for any t ∈ I, (7.2)

is said to be the discrepancy process between v and w relative to z.

If not otherwise specified, where we fix a U -valued process z , {zt : t ∈ I},
for any v ∈ X ∗ and w ∈ Y ∗, we always write V (w) to denote the discrepancy
process between v and w relative to z. For our application, we regard any process
z = {zt : t ∈ I} as a dynamics for the discounted value of some specific life insurance
contract. More precisely, we understand zt(x) as the risk-neutral discounted value of
the contract at time t ∈ I, when it is referred to x ∈X .

Besides, similarly to the framework of Section 6.4, it is worth to be noted that

zt(x) = 〈δx, zt〉U , for any t ∈ I and x ∈X .

Hence, we may regard δx as a portfolio composed by one policy related to x ∈ X

and any v ∈ X ∗ as a portfolio composed by different policies. On the other hand,
we regard any w ∈ Y ∗ as a specific model points portfolio.

Lemma 7.1. Let z , {zt : t ∈ I} be a U-valued process such that supt∈I ‖zt‖2
L2(Ω;U) <

∞ and fix v ∈X ∗. Then, Vt(w) ∈ L2(Ω), for any t ∈ I and w ∈ Y ∗, with

sup
t∈I
‖Vt(w)‖2

L2(Ω) <∞.

115



Proof. Fix w ∈ Y ∗ and notice that

sup
t∈I
‖Vt(w)‖2

L2(Ω) = sup
t∈I
‖〈v − w, zt〉U‖2

L2(Ω) ≤ ‖v −m‖2
U∗ sup

t∈I
‖zt‖2

L2(Ω;U).

In view of our applications, we recast Definitions 6.4 and 6.5 as follows.

Definition 7.2. Let z , {zt : t ∈ I} be an U -valued process such that

sup
t∈I
‖zt‖2

L2(Ω;U) <∞. (7.3)

and fix v ∈X ∗. We refer to the functional V : Y ∗ → R defined by

V(w) ,
∫
I
E{|Vt(w)− EVt(w)|2}dt, for any w ∈ Y ∗, (7.4)

as the model points risk functional relative to z induced by v over the set Y ∗. More-
over, we call optimal model points portfolio any V-optimal element w∗ ∈ Y ∗.

If not otherwise specified, where we fix a process z , {zt : t ∈ I} satisfying the
condition (7.3) and a portfolio v ∈ X ∗ is given, we always write V to denote the
model points risk functional relative to z induced by v over Y ∗.

Model points risk functional representation. Let E and H be the spaces as considered
in Section 6.4 and thus assume the process p = {pt : t ∈ I} defined by the identity
(6.48) to model the risk-neutral dynamics of the discounted price curve. Since the
value of any policy is required to be estimated by considering the probability weighted
average of the related future cash flow, it is reasonable to write

zt = ζ(t, pt) for any t ∈ I,

for some function ζ : I × E → U . We discuss this approach later on.

Lemma 7.2. Fix a function ζ : I × E → U and denote by p the process (6.48). If ζ
is of class C 1,2

b , then ζ(t, pt) ∈ L2(Ω;U) is well defined, for any t ∈ I, with

sup
t∈I
‖ζ(t, pt)‖2

L2(Ω;U) <∞.
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Proof. First, notice that since ζ(·, 0) is assumed to be continuous on I, we have that

‖ζ(·, 0)‖∞ , sup
t∈I
‖ζ(t, 0)‖U <∞.

Besides, since ζ is assumed to be of class C 1,2
b , for any t ∈ I, the following inequalities

hold true a.s.,
‖ζ(t, pt)‖2

U ≤ ‖∇2ζ‖2
∞‖pt‖2

E + |ζ(t, 0)|2 <∞,

and hence
sup
t∈I
‖ζ(t, pt)‖2

U ≤ ‖∇2ζ‖2
∞ sup

t∈I
‖pt‖2

E + ‖ζ(·, 0)‖2
∞ <∞,

since supt∈I ‖pt‖2
E <∞ due to Lemma 5.8, applied to the process p.

The following result characterizes the model points risk functional relative to z,
when it is given by the identity (7.5), induced by a portfolio v over Y ∗.

Proposition 7.1. Fix v ∈ X ∗ and let ζ : I × E → U be a function of class C 1,2
b .

If ζ is a BL-function relative to p, where the process p is given by (6.48), and we set
zt = ζ(t, pt), for any t ∈ I, then

V(w) = E
{∫

I
‖〈v − w,∇2ζ(t, pt)σt〉U‖2

H(1− t)dt
}
, for any w ∈ Y ∗. (7.5)

It is worth to be noted that that, since the process σ takes values in γ(H,E),
Lemma 5.1 gives that the process ∇2ζ(t, pt)σt, for t ∈ I, takes values in γ(H,U).
Thus, in the representation (7.5) we regard 〈·, ·〉U as the H-valued pairing between
γ(H,U) and U∗.

Proof of Proposition 7.1. First, notice that supt∈I ‖zt‖2
L2(Ω;U) <∞ thanks to Lemma

7.2, since the function ζ : I × E → U is assumed to be of class C 1,2
b . On the other

hand, notice that since ζ is assumed to be a BL-function relative to p, and the process
p is given by (6.48), Lemma 6.1 gives that a.s.

ζ(t, pt) = ζ(0, p0) +
∫ t

0
∇2ζ(s, ps)σsdWs, for any t ∈ I. (7.6)

Let Φ to be a P-set relative to z defined in such a way that for any φ ∈ Φ there
exists w ∈ Y ∗ with φt = w, a.s., for any t ∈ I. Then, the result follows from the

117



statement (ii) in Theorem 6.1 by setting ξt = ζ(t, pt) and f(t, u) = 〈v, u〉U , for any
u ∈ U . In this respect, notice that bt = 0 a.s., for any t ∈ I, and f appears to be a
BS-function relative to z.

7.2 WHOLE LIFE INSURANCE

In this section we discuss the problem of the model points selection when dealing
with a portfolio of whole life insurance policies, i.e. a contract that provides for a one
unit benefit on the death of the policy owner. In view of this application, we assume
X to coincide with some closed interval of R+ and we regard any x ∈X as the age
of the policy owner at time t = 0.

Moreover, here and in the sequel of this section we define U , W1,2(X ) to be the
space of absolutely continuous functions u : X → R such that ‖u′‖L2(X ) <∞, where
we denoted by u′ the weak derivative of u. In this respect, recall that U is a Hilbert
space, when endowed with the norm

‖u‖U , {‖u‖2
L2(X ) + ‖u′‖2

L2(X )}1/2, for any u ∈ U ,

such that the evaluation functional δx(u) , u(x), for u ∈ U , is bounded for any
x ∈X .

Force of mortality and whole life policy process. Here and in the sequel, we write
µ(s, x + s) to denote the force of mortality relative to x ∈ X at any time s ≥ 0,
i.e. the instantaneous rate of mortality at time s and relative to an individual that is
x-aged at time t = 0. We make the convenient assumption that the force of mortality
µ(s, x + s) is given at any s ≥ 0 and for any x ∈ X . Moreover, we do not consider
those deaths that occur during the first year by setting

µ(s, x+ s) = 0, for any x ∈X and for s ∈ I, (7.7)

and hence defining the survival index as

S(x, T ) , exp
{
−
∫ T

1
µ(s, x+ s)ds

}
, for any x ∈X and T ∈ T . (7.8)
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We regard S(x, T ) as the proportion of individuals that are x-aged at time t = 0 and
that survive to age x+ T .

Note that condition (7.7) results convenient for our application, since it implies
that the policy portfolio does not change during the time interval I due to the death
of the policy owners. Such an assumption is acceptable, since the events occurring
within the first year only cause a minimal impact on the performance of the overall
portfolio.

The discounted value of a whole life insurance policy relative to x ∈ X at time
t ∈ I may be written as

zt(x) =
∫

T
S(x, T )µ(T, x+ T )pt(T )dT. (7.9)

The following Lemma tell proves under mild conditions that the identity (7.9) provides
a well defined U -valued process.

Lemma 7.3. Let w : T → R+ be an increasing function satisfying (6.47) and set
E = Hw according to Definition 6.6. Moreover, assume the function x ∈ X 7→
µ(s, x + s) to be continuously differentiable, for any s ∈ T . If w ≥ 1 everywhere on
T and the following condition holds

sup
T∈T

w(T )−1
∫

X
|∂xS(x, T )|2dx <∞, (7.10)

then the process z , {zt : t ∈ I} given by the identity (7.9) is U-valued, with

sup
t∈I
‖zt‖2

L2(Ω;U) <∞. (7.11)

Proof. First, notice that since pt(T )→ 0 a.s., as T → +∞, for any t ∈ I, and

S(x, T )µ(T, x+ T ) = −∂TS(x, T ), for any x ∈X and T ∈ T ,

then the identity (7.9) may be recast by invoking integration by parts arguments as
follows,

zt(x) = −S(x, 1)pt(1) +
∫

T
S(x, T )p′t(T )dT, for any t ∈ I and x ∈X .
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As a direct consequence, for any fixed t ∈ I, we obtain∫
X
zt(x)2dx ≤

∫
X
S(x, 1)2pt(1)2dx+

∫
X

∫
T
S(x, T )2p′t(T )2dTdx

(i)
≤ pt(1)2 +m(X )

∫
T
p′t(T )2dT, (7.12)

where the inequality (i) holds true since S(x, T ) ≤ 1, for any x ∈ X and T ∈ T ,
and the function x ∈ X 7→ µ(s, x + s) is continuous, for any s ∈ T . In (7.12) we
denoted by m(X ) the Lebesgue measure of the interval X .

Next, Lemma 5.8 applied to the process p implies that

sup
t∈I

E‖pt‖2
E = sup

t∈I
E
{∫

T
p′(T )2w(T )dT

}
<∞. (7.13)

As a consequence, Cauchy-Schwartz inequality jointly with Lemma 6.5 lead to

sup
t∈I

E{pt(1)2} = sup
t∈I

E|〈δ1, pt〉E|2 ≤ ‖δ1‖2
E∗ sup

t∈I
E‖pt‖2

E <∞, (7.14)

and Hölder’s inequality jointly with the condition w ≥ 1, everywhere on T , implies
that

sup
t∈I

E
{∫

T
p′t(T )2dT

}
≤ sup

t∈I
E
{∫

T
p′t(T )2w(T )dT

}
sup
T∈T

w(T )−1 <∞. (7.15)

Next, the inequalities (7.14) and (7.15) combined to (7.12) give

sup
t∈I

E‖zt‖2
L2(X ) = sup

t∈I
E
{∫

X
zt(x)2dx

}
<∞.

On the other hand, since the function x ∈ X 7→ µ(s, x + s) is assumed to be
continuously differentiable, then

T ∈ T 7→
∫

X
|∂xS(x, T )|2dx,

is well defined everywhere on T . Furthermore,

z′t(x) = −∂xS(x, 1)pt(1) +
∫

T
∂xS(x, T )p′t(T )dT, for any t ∈ I and x ∈X ,

(7.16)
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and hence, for any fixed t ∈ I, we get
∫

X
z′t(x)2dx ≤ pt(1)2

∫
X
|∂xS(x, 1)|2dx+

∫
T

{∫
X
|∂xS(x, T )|2dx

}
p′t(T )2dT. (7.17)

Next, since

sup
t∈I

E
{∫

T

{∫
X
|∂xS(x, T )|2dx

}
p′t(T )2dT

}
≤

sup
t∈I

E
{∫

T
p′t(T )2w(T )dT

}
sup
T∈T

w(T )−1
∫

X
|∂xS(x, T )|2dx <∞,

thanks to Hölder’s inequality again combined with the assumption (7.10) and the
condition (7.13), according to (7.14) we get that (7.17) leads to

sup
t∈I

E‖z′t‖2
L2(X ) = sup

t∈I
E
{∫

X
z′t(x)2dx

}
<∞.

Whole life model points portfolio. In §6.4 we represented an interest rate securities
portfolio by considering a portfolio composed by a single zero coupon bond. In
a similar manner, throughout we consider the case in which a portfolio of whole
life insurance policies owned by individual with different ages and time t = 0 is
represented by considering a certain amount of whole life policies relative to the same
age.

With this purpose in mind, we fix x1, ..., xK ∈ X and α1, ..., αK ∈ R+ and we
consider the portfolio v ∈X ∗ defined by setting

v ,
K∑
k=1

αkδxk . (7.18)

On the other hand, we assume that for any w ∈ Y ∗ there exists x ∈ X such that
the following representation holds

w = α(x)δx, (7.19)
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for some x ∈X , where
α(x) , z0(x)−1〈v, z0〉U . (7.20)

Therefore, we may write Y ∗ = X , by identifying any w ∈ Y ∗ with the element
x ∈ X that satisfies the representation (7.19). It is worth to be noted that the
condition (7.20) is reasonable, since it guarantees that

〈v, z0〉U = 〈w, z0〉U ,

and hence that any model points portfolio w ∈ Y ∗ admits the same discounted value
as v ∈X ∗, at time t = 0.

Proposition 7.2. Let v ∈X ∗ as defined by the identity (7.18) and Y ∗ such that the
representation (7.19) holds true for any w ∈ Y ∗. Furthermore, let z = {zt : t ∈ I}
be the process defined by the identity (7.9). Then, we obtain

V(x) = E
{∫

I

∥∥∥∥∥
∫

T

(
K∑
k=1

αkκ(xk, T )− α(x)κ(x, T )
)
σt(T )dT

∥∥∥∥∥
2

H

(1− t)dt
}
,

for any x ∈X , (7.21)

where
κ(x, T ) , S(x, T )µ(T, x+ T ), for any x ∈X and T ∈ T .

Proof. First, we introduce the functional Z ∈ L(E,U) defined

Z(q) =
∫

T
κ(·, T )q(T )dT, for any q ∈ E.

Hence, when considering the function ζ : I × E → U given by the identity

ζ(t, q) , Z(q), for any t ∈ I and q ∈ E, (7.22)

we obtain that ζ is of class C 1,2
b and it turns out to be a BL-function relative to

p. Moreover, note that the process z = {zt : t ∈ I} defined by the identity (7.9)
is recovered by setting zt = Z(pt), for any t ∈ I. In this respect, it is worth to be
highlighted that the identification (7.22) is allowed since the survival index (7.8) does
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not depend on t ∈ I, that is the case when imposing the condition (7.7). Thus, when
writing ∇Z to denote the operator ∇2ζ, Proposition 7.1 applies and leads to

V(x) = E
{∫

I

∥∥∥∥∥
K∑
k=1

αk∇Z(pt)σt(xk)− α(x)∇Z(pt)σt(x)
∥∥∥∥∥

2

H

(1− t)dt
}
,

for any x ∈X , (7.23)

where, for notation simplicity, in the identity (7.23) we set

∇Z(pt)σt(x) , 〈δx,∇Z(pt)σt〉U , for any t ∈ I and x ∈X .

On the other hand, by a direct computation, one has that a.s.

∇Z(pt)σt(x) =
∫

T
κ(x, T )σt(T )dT, for any x ∈X ,

and hence, jointly with the identity (7.23) we obtain the representation (7.21).

Numerical example. Figure 7.1 provides a visual representation of the functional
(7.21). In particular, each bar represents the amount αk associated to the age xk, for
k = 1, ..., K, and it is assessed by the right side vertical axis of the figure. On the
other hand, the functional V(x), varying x ∈ X , is represented by the line and its
value is assessed by the scale on the left side vertical axis of the figure.
The process p has been simulated by considering the same model governing the evo-
lution of the instantaneous-short-rate as in Section 6.4. The survival index (7.8) has
been derived by considering a Gompertz-type law modelling the force of mortality
[94], defined by

µ(s, x+ s) = a(s) exp {(x+ s)b(s)}, for any x ∈X and s ∈ T . (7.24)

where a(s) and b(s), varying s ∈ T , are positive functions. All the details of the
simulation are collected in the caption of Figure 7.1.
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Figure 7.1: Visual representation of the functional (7.5), where K = 5, with x1 = 30,
x2 = 40,...,xK = 70. In particular, the values αk, for any k = 1, ..., K, are represented
by the vertical bar and they are assessed by the right side vertical axis. The value
V(x), for 20 ≤ x ≤ 80, is represented by the blue line and it is assessed by the left
side vertical axis. The process (6.54) has been considered to model the short rate
dynamics with the same parameters as described in the caption of Figure 6.1. For
simplicity, the mortality force (7.24) has been computed by setting a(s) = 0.0003 and
b(s) = 0.06, for any s ≥ 1.
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CHAPTER 8

LIBOR Market Model in Term Insurance

In Chapter 7, for a given a set of model points portfoliosW and a given model points
risk functional V : W → R induced by the policy portfolio v over W , any element
w∗ ∈ W which solves the minimization problem

w∗ = argminw∈WV(w), (8.1)

has been called V-optimal. In this respect, recall that any V-optimal portfolio w∗ ∈ W
may be understood as the best representation of the inherent risk of v, among all the
portfolios w ∈ W .

From the numerical point of view, in most practical situation such a minimization
results to be computationally demanding, since it generally leads to a global opti-
mization problem in high dimensions. On the other hand, the numerical simulation
of the interest rates dynamics may involve high computational costs, which is to be
addressed by using proper computer architectures and efficient simulation techniques.

In this chapter, we study the performance of certain numerical methods aimed
at adressing the minimization problem (8.1), when considering a portfolio of term
insurance policies and a LIBOR Market Model governing the dynamics of the forwards
rates. Since one of the main features is represented by the forward rate dynamics,
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throughout we consider the standard notation for the LIBOR Market model, that is
different from which we previously used.

This chapter is based on the original work [76].

8.1 BOND DYNAMICS IN A LIBOR MARKET MODEL

In this section, we discuss the risk-free dynamics of the discounted bond price, when
considering the LIBOR Market Model governing the time evolution of the forward
rates.

Preliminaries. Here and in the sequel, we fix a finite set T , {T0, T1, ..., TN} such
that T0 = 1 and T0 < ... < TN . We shall regard any Tn for any n = 0, ...., N as
a specific maturity time and we shall write τn , Tn − Tn−1. Moreover, I , (0, 1)
denotes the unit interval on the real line and it corresponds to the period of one year.

We shall suppose that there exists a market valued bond maturing at any future
time Tn ∈ T and we shall write pn(t) to denote its risk-neutral discounted price
at time t ∈ I. Moreover, we shall denote by Fn(t) the value at time t ∈ I of the
(simply-compounded) LIBOR forward rate associated to the period (Tn−1, Tn]. In
this respect, recall that Fn(t) is defined in such a way that the following condition is
met,

pn(t)(1 + Fn(t)τn) = pn−1(t).

Hence, we can write

pn(t) = p0(t)
n∏
k=1

1
1 + Fk(t)τk

, for any t ∈ I. (8.2)

In this connection, it is worth to be highlighted that since t < Tn, for any t ∈ I and
any Tn ∈ T , the quantity pn(t) is always well defined.

LIBOR Market Model. Here and in the sequel, we consider a complete probability
space (Ω,F ,P) and we assume any stochastic process to be defined on it. Moreover,
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we set H = RN and for any h ∈ H, we denote by h1, ..., hN its components with
respect to a given orthonormal basis. Hence, let ‖ · ‖H denote the norm on it defined
by

‖h‖H ,

{∑
n,k

%nkhnhk

}1/2

, for any h ∈ H,

where %nk = e−δ(n−k) for some constant δ ∈ R+.
Here and in the sequel, we fix a H-cylindrical process W , {W (t) : t ∈ I}.

According to similar arguments to those ones presented in Section 6.3, the pro-
cess W may be regarded as a correlated N -dimensional Weiner process W (t) =
(W1(t), ...,WN(t)), for t ∈ I, such that

E{Wn(t)Wk(t)} = %nk.

As in the previous chapters, we say a process to be adapted if it is adapted with
respect to the augmented filtration GW , {GW

t : t ∈ I} generated by W .
Throughout, let p0(t), for t ∈ I, be an adapted process and P the forward measure

associated to the maturity T0 ∈ T , i.e. such that for any adapted process X ,

{X(t), t ∈ I}, the associated discounted process X̃(t) , {X̃(t) : t ∈ I} given by

X̃(t) = p0(t)−1X(t), for any t ∈ I,

turns out to be a GW -martingale. According to the LIBOR Market Model (see, e.g.,
Section 6 in [25]), the forward rate Fn(t), for t ∈ I, is thus given by the dynamics

dFn(t) = µn(t)dt+ σn(t)Fn(t)dWn(t), (8.3)

jointly with some given initial condition Fn(0). Here and in the sequel, t ∈ I 7→ σn(t)
are deterministic functions and µn(t), for t ∈ I, are completely determined by the
following identity,

µn(t) = σn(t)Fn(t)
n∑
k=1

%nkτkσk(t)Fk(t)
1 + Fk(t)τk

.

On the other hand, the identity (8.3), for n = 1, ..., N , may be understood as the
dynamics of the components of the N -dimensional process F (t) = (F1(t), ..., FN(t)),

dF (t) = µ(t)dt+ Σ(t)dW (t),
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jointly with the initial condition F (0) = (F1(0), ..., FN(0)), where, for any fixed t ∈ I,
we set µ(t) = (µ1(t), ..., µN(t)) and Σ(t) denotes the matrix whose components are
given by

Σnk(t) = σn(t)Fn(t)δnk.

Throughout, for notation simplicity we shall write Σn(t) to denote the nth row of
Σ(t).

Bond price dynamics. Here and in the sequel, the discounted price at t ∈ I associated
to the bond expiring at the tenor date Tn ∈ T is denoted by

p̃n(t) , pn(t)
p0(t) , for any t ∈ I. (8.4)

According to the present setup, the process p̃n(t), for t ∈ I, turns out to be a GW -
martingale. Moreover, its dynamics is given by the following result.

Lemma 8.1. For any n = 1, ..., N , the discounted bond price process p̃n(t) admits
the dynamics

dp̃n(t) = −εn(t)p̃n(t)dW (t), (8.5)

where

εn(t) ,
n∑
k=1

τk
1 + Fk(t)τk

Σk(t). (8.6)

Proof. Fix n = 1, ..., N and notice that according to the identity (8.2) the discounted
price p̃n(t) at time t ∈ I given in (8.4) is such that

ln p̃n(t) = −
n∑
k=1

ln(1 + Fk(t)τk).

For any diffusion process X(t), for t ∈ I, driven by the Wiener process W , let DCX(t)
denote its vector diffusion coefficient. In particular, the representation (8.4) implies
that

DCFn(t) = Σn(t), (8.7)
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for any t ∈ I. Thus, we obtain

DC ln p̃n(t) = −
n∑
k=1

DC ln(1 + τkFk(t))

= −
n∑
k=1

τk
1 + τkFk(t)

DCFk(t)

= −
n∑
k=1

τk
1 + τkFk(t)

Σk(t). (8.8)

In order to complete the proof, notice that

DCp̃n(t) = pn(t)DC ln p̃n(t), for any t ∈ I.

8.2 TERM INSURANCE POLICIES

In this section, we discuss the problem of the model points selection when dealing
with a portfolio of term insurance policies, i.e. those contracts that pay a lump sum
benefit on the death of the policy owner, provided that it occurs until a specific term
that is defined in the contract. For the sake of simplicity, we assume that the benefit
related to each policy is always represented by a unit amount of a certain currency.

We assume to deal with policies that are unaffected by credit risk, i.e. the insur-
ance company always guarantees the entire benefit that is provided for in the contract.
On the other hand, we do not analyse the revenues received by the insurance company
and thus we do not take into account the premiums stream of the contract nor any
further expense that is responsibility of the client.

Term insurance portfolios. We assume the generic term insurance policy within a
given portfolio to be labelled by both the age of the policy owner at time t = 0 and
the term date of the contract. For this purpose, given two finite index sets I and J ,
let X = {xi : i ∈ I} and Y = {yj : j ∈ J } be finite sequences of real values such that
xi ≥ 0, for any i ∈ I and yj ≥ 1, for any and j ∈ J . Here and in the sequel, any

129



couple (xi, yj) uniquely defines the family of policies related to the class of individuals
labelled by xi ∈ X and with maturity yj ∈ Y .

Hereafter, we shall write µ(s, xi+s) to denote the force of mortality at time s ≥ 0
related to the class of individuals labelled by xi ∈ X . Moreover, we set

µ(s, xi + s) , a(s) exp (xi + s)b(s), for any s ≥ 0 and xi ∈ X , (8.9)

where a(s) and b(s), for s ≥ 0, are given functions, which are considered to be
deterministic observables. We make the convenient assumption that a(s) = 0, for
any s ∈ I, and hence

µ(s, xi + s) = 0, for any i ∈ I and any s ∈ I, (8.10)

which guarantees that any portfolio of term insurance policies does not change within
the time interval I due to the death of the policy holders. Recall that this is an
acceptable hypothesis, since the events occurring within the first year only cause a
minimal impact on the performance of the overall portfolio.

According to this setup, the survival index is thus given by

S(xi, Tn) = exp
{
−
∫ Tn

1
µ(s, xi+s)ds

}
, for any xi ∈ X and n = 1, ..., N , (8.11)

which is understood as the proportion of those individuals labelled by xi ∈ X that
survive to age xi + Tn. Throughout, we write ST to denote the derivative of S in its
second variable, which is given by

ST (xi, Tn) = −S(xi, Tn)µ(Tn, xi + Tn).

The following definition introduces the notation for the term insurance policies
that we shall consider later on.

Definition 8.1. For any xi ∈ I and yj ∈ J , the discounted risk-free value at time
t ∈ I of a term insurance policy owned by an individual labelled by xi ∈ X and with
term yj ∈ Y is given by

zij(t) = −
N∑
n=1

ST (xi, Tn)p̃n(t)1{Tn≤yj}. (8.12)
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Any linear combination of the processes (8.12) gives the risk-free discounted value
of a term insurance portfolio. This is stated by the following definition.

Definition 8.2. We call term insurance portfolio relative to X and Y any matrix
v = {vij : xi ∈ X and yj ∈ Y}. Moreover, the discounted risk-free value v(t) of v at
time t ∈ I is defined as

v(t) =
∑
ij

zij(t)vij. (8.13)

Given any policy portfolio v relative to X and Y , we regard any of its components
vij as the amount of policies in v that are owned by the class of individuals labelled
by xi ∈ X and with term yj ∈ Y .

We define the dimension of a term insurance portfolio as the amount of policies
that are stored in it.

Definition 8.3. We call dimension of a term insurance portfolio v relative to X and
Y the quantity

dim(v) ,
∑
ij

vij.

In what follows, for any couple of term insurance policy portfolios v1 and v2 relative
to X and Y , we shall write (v1 − v2)(t) , v1(t)− v2(t), for any t ∈ I.

Model points risk functional representation. Here and in the sequel, we shall always
assume a policy portfolio v relative to X and Y to be given and we fix a set W of
term insurance policy portfolios relative to X and Y . We refer to any w ∈ W as a
model points portfolio.

According to this setup, Definition 7.2 reduces as follows.

Definition 8.4. We refer to the functional V :W → R defined by

V(w) =
∫
I
E|(v − w)(t)− E(v − w)(t)|2dt, for any w ∈ W ,

as the model points risk functional induced by v over W .

If not otherwise specified, where a term insurance portfolio v is given, we always
write V to denote the model points risk functional induced by v over W .
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According to the arguments of the previous chapters, we shall understand the
quantity V(w) as the error that occurs when the policy portfolio v is substituted by
the model points portfolio w ∈ W . In this respect, notice that in the special case
when v ∈ W , one has that V(v) = 0.

According to Definition 6.5, a model points portfolio w∗ ∈ W is said to be V-
optimal relative to v when the following inequality holds true

V(w∗) ≤ V(w), for any w ∈ W . (8.14)

We regard any model points portfolio w∗ ∈ W satisfying the inequality (8.14) as an
optimal representation of the policy portfolio v according to the functional V .

The following result provides an alternative representation of the model points
risk functional induced by v over W .

Proposition 8.1. The model points risk functional induced by a portfolio v over W
admits the following form

V(w) = E
{∫

I

∥∥∥∥∥∑
n

{∑
ij

(vij − wij)ST (xi, Tn)1{Tn≤yj}
}
εn(t)p̃n(t)

∥∥∥∥∥
2

H

(1− t)dt
}
,

for any w ∈ W . (8.15)

The proof of Proposition 8.1 is based upon similar arguments as those ones pro-
vided in the proof of Proposition 7.2.

Proof. Let E = RN and for any t ∈ I, set p̃(t) , (p̃1(t), ..., p̃N(t)). Thus, let U =
(X × Y)R be the class of real matrices r = {r(xi, yj) : i ∈ I, and j ∈ J }.

Consider the functional Z ∈ L(E,U) that for any xi ∈ X and yj ∈ Y is given as
follows,

Z(q)(xi, yj) , −
∑
n

qnST (xi, Tn)1{Tn≤yj}, for any q ∈ E,

and note that the process z(t) = {z(t) : t ∈ I} defined by the identity (8.13) is
recovered when setting

z(t) = Z(p̃(t)), for any t ∈ I.
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Since Z is linear, for any q ∈ E, its Frechét derivative ∇Z(q) ∈ L(E,U) satisfies
the following identity, for any xi ∈ X and yj ∈ Y ,

(∇Z(q)q′)(xi, xj) = −
∑
n

q′nST (xi, Tn)1{Tn≤yj}, for any q′ ∈ E.

On the other hand, for any t ∈ I, when letting ε(t) be the matrix with the nth row
given by p̃n(t)εn(t), where εn(t) is defined in (8.6), we have that for any xi ∈ X and
yj ∈ Y , the following identity holds

(∇Z(·)ε(t))(xi, xj) = −
∑
n

p̃n(t)εn(t)ST (xi, Tn)1{Tn≤yj}. (8.16)

Consider now the function ζ : I × E → U defined as

ζ(t, q) , Z(q), for any t ∈ I and q ∈ E. (8.17)

In this respect, it is worth to be highlighted that the identification (8.17) is allowed
since the survival index (8.11) does not depend on t ∈ I, which is the case when
imposing the condition (8.10).

Note that the function ζ is of class C 1,2
b and it turns out to be a BL-function

relative to p̃. Since (8.5) may be restated as the following E-valued dynamics

dp̃(t) = −ε(t)dW (t), (8.18)

then Proposition 7.1 applies and gives

V(w) = E
{∫

I

∥∥∥∥∥∑
ij

(vij − wij)(∇Z(p̃(t))ε(t))(xi, xj)
∥∥∥∥∥

2

H

(1− t)dt
}
,

for any w ∈ W . (8.19)

which, jointly with the identity (8.16), gives the representation (8.15).

8.3 NUMERICAL STUDIES

In this section, we fix a term insurance portfolio v and a set W of model points.
Then, we discuss the numerical treatment of the global optimization problem

w∗ = argminw∈WV(w), (8.20)
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where the functional V is given by the representation (8.15).

Optimization. Deterministic optimization algorithms such as gradient local optimiza-
tion schemes are generally computationally efficient. Examples of this kind of algo-
rithms are Pattern Search or the gradient based algorithms like NCG, BFGS, L-BFGS
[123] or L-BFGS-B [35]. On the other hand, when considering global optimization
problems, local optimization schemes might converge to local minima of the problem.

This problem may be addressed by considering a stochastic optimization algo-
rithm, such as Simulated Annealing (SA). Further details of this matter may be found
in [77] and the references therein. Notwithstanding the convergence of the stochastic
optimization algorithms is generally slow, they have the advantage to discard local
optimal points and avoid to stuck in local solutions.

One technique to obtain faster global optimization algorithms is to consider hybrid
algorithms, which combine stochastic optimization algorithms with gradient local
optimization schemes. One example of these kind of algorithms is the Basin Hopping
algorithm (BH), in which SA is used for sampling the space by randomly generating
neighbours, and local gradient algorithms are used to capture the minima starting
from the generated points of the stochastic sampler. Details of thes issues may be
found in [78, 181] and the references therein.

Parallelization. The functional V(w) given by (8.15), for any model points portfolio
w ∈ W , has been estimated as a combination of the Monte Carlo simulation for
computing the expectation in the measure P, jointly with the discretization of the
integral related to the time variable t ∈ I. In particular, a parallel algorithm for
multi-CPU architecture and implemented in C++ by considering the OpenMP API
has been performed for parallelizing Monte Carlo and speed up the computation.

Table 8.1 shows the performance of the multi-CPU implementation for the calcu-
lation of the model points risk functional. The details of the simulation are collected
in the caption of the figure.
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N. cores Time (seconds) Speedup
1 166.64 -
2 97.45 1.71
4 43.62 3.82
8 21.15 7.88
16 10.56 15.78

Table 8.1: Time in seconds and speedups when consideirng 104 paths in the Monte
Carlo simulation. Here, the term insurance portfolio v has dimension dim(v) = 103

and each w ∈ W satisfies wij = 0, for any (xi, yj) /∈ Z, where Z ⊂ X ×Y is such that
its cardinality |Z| = 45.

Details of the simulation. For any fixed n = 1, ..., N , the path associated to the
dynamics of the forward rate Fn relative to the LIBOR Market Model (8.3) has been
simulated by considering the following scheme,

ln F̂n(t+ ∆t) = ln F̂n(t) + σn(t)
n∑

m=1

%nmδmσm(t)F̂m(t)
1 + τmF̂m(t)

∆t

− σn(t)2

2 ∆t+ σn(t)∆Ŵn(t), (8.21)

where, for any t ∈ I, we write F̂n(t) and ∆Ŵn(t) to denote the approximation to
Fn(t) and dWn(t) respectively.

Throughout, any numerical example has been performed by considering the tenor
structure T , {1, 2, ..., 100}. For sake of simplicity, we set Fn(0) = 0.05, for any
n = 5, ..., 100 and F1(0) = 0.01, F2(0) = 0.02, F3(0) = 0.03 and F4(0) = 0.04.
Moreover, for each n = 1, ..., N , we set σn(t) = σ, for any t ∈ I, where σ = 0.1.

On the other hand, the functions a(s) and b(s), for s ≥ 1, which give the force of
mortality (8.9) are defined in such a way that a(s) = a and b(s) = b for any s ≥ 1,
where a = 0.0003 and b = 0.06.

Tests. Next, we discuss two tests that have been considered in order to study and
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validate the numerical solution problem (8.20). All the cited tables and figures are
commented and reported at the end of this section.

Test 1. In this example, we assume X and Y to have the same cardinality
|X | = |Y| = 10. Fix a term insurance portfolio v′ relative to X and Y and let W be
the class of square real matrices w of order 10, such that wij = 0 in the case when
v′ij = 0. Thus, given a positive constant α > 1, consider the term insurance portfolio v
defined as v , αv′. As a result, letting V be the model points risk functional induced
by v over W , since v ∈ W and V(v) = 0, one has that the optimal model points
portfolio w∗ given by the minimization problem (8.20) is expected to approximate v.

Table 8.2 reports the portfolio v′ compared with the obtained solution w∗ of the
problem (8.20), when using the BH algorithm with L-BFGS-B as the local optimizer.
The optimization time was 900 seconds (about 15 minutes) and the minimum is given
by V(w∗) = 2.55357× 10−08. The convergence of the method is shown in Figure 8.1.

On the other hand, the convergence of the optimization procedure using the SA
algorithm is shown in Figure 8.2. The time needed was 36000 seconds (about 10
hours).

For this test, Monte Carlo simulations have been performed by considering 104

paths.

Test 2. In this test, we fix X = {30, 31, 32, ...., 75} and Y = {5, 6, 7, ...., 30} and
thus we fix a term insurance portfolio v relative to X and Y such that dim(v) = 104.
Moreover, we set XW = {30, 35, 40, ..., 75} and YW = {5, 10, 15, ..., 30}. Thus, let W
be the family of term insurance portfolios relative to X and Y , such that wij = 0 for
any (xi, yj) /∈ XW × YW .

In this case, the solution w∗ ∈ W obtained by considering the BH method using
L-BFGS-B as local optimizer is shown in Table 8.3. Since |XW | = 9 and |YW | = 5,
the solution w∗ ∈ W is represented as a real 9 × 5 matrix of the form w∗ = {w∗ij :
xi ∈ XW , and yj ∈ YW}.
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The total computing time needed by the BH algorithm was 9 hours and 36 seconds
using 16 processors for the parallel evaluation of the functional V(w), for w ∈ W .
The result of the optimization is V(w∗) = 0.0211981.

The global property of the hybrid algorithm turns out to be of great importance in
this optimization procedure, as several iterations were needed to reach the minimum.
Also the convergence speed and accuracy of the L-BFGS-B local optimizer is a key
point, as SA was not able to converge in this case. The convergence of the algorithm
in this test is shown in Figure 8.3.
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X Y v′

20.0 50.0 50000
25.0 45.0 100000.0
30.0 40.0 150000.0
35.0 35.0 200000.0
40.0 30.0 250000.0
45.0 25.0 300000.0
50.0 20.0 350000.0
55.0 15.0 400000.0
60.0 10.0 450000.0
65.0 5.0 500000.0

X Y w∗

20.0 50.0 50002000
25.0 45.0 99996900
30.0 40.0 150000000
35.0 35.0 200003000
40.0 30.0 249997000
45.0 25.0 300001000
50.0 20.0 350000000
55.0 15.0 400000000
60.0 10.0 450000000
65.0 5.0 500000000

Table 8.2: Comparison between the insurance portfolio v′ ∈ W on the left and the
solution w∗ of the minimization problem (8.20) on the right, for α = 103 for test 1.
The optimization has been performed by using the BH algorithm with L-BFGS-B.

5 10 15 20 25

30 45378.4 115912 125831 234832 234832
35 308348 346048 401661 449384 500195
40 1.45884e+09 8.55499e+08 9.26091e+08 7.49281e+08 7.84661e+08
45 6.23481e+07 1.21281e+09 1.33923e+09 4.87623e+08 1.0548e+09
50 1.01028e+09 9.76963e+08 8.46413e+07 1.03506e+09 5.81495e+08
55 7.57129e+08 6.60263e+08 7.68891e+08 3.98609e+08 1.03456e+09
60 1.53556e+09 2.16747e+08 3.15092e+08 5.20125e+08 6.59192e+08
65 1.20964e+09 1.47117e+09 1.47283e+09 5.20125e+08 6.59192e+08
70 9.67702e+08 2.22518e+08 1.38219e+09 1.32217e+09 6.91588e+08

Table 8.3: Solution w∗ ∈ W of the optimization problem (8.20), by considering the
Basin-Hopping algorithm, for test 2.
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Figure 8.1: Convergence of the BH method with L-BFGS-B as the local optimizer in
test 1.
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Figure 8.2: Convergence of the SA algorithm in test 1.
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Figure 8.3: Convergence of the BH algorithm with L-BFGS-B as the local optimizer
in test 2.
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Open Issues and Further Research Lines

The following issues are out of the scope of this dissertation and they represent
interesting questions that could be considered for further developments of this work.

MODEL RISK

Serious deficiencies in risk model specification and changes in pricing methodologies
were discovered to play a central role within the 2008 financial crisis. One can find
details of this matter in [99, 105] and [138].

Model risk or model uncertainty refer to the potential losses that a financial insti-
tution may suffer due to the development and the application of inaccurate product
valuations or an incorrect calibration of the parameters involved. Recent updates in
the framework of banking regulation and supervision require financial institutions to
explicitly assess the impact of model risk to the product valuations and to deal with
it separately from other source of risks. Details of this matter may be found in the
documents released by the Bank for International Settlement [17, 18], the European
Banking Authority [66] and the Federal Reserve [154].

In recent years, a number of novel approaches have been suggested to assess model
uncertainy. Cont [43] developed a framework in which model uncertainty for pricing
models is represented as a mapping that satisfies minimal desirable properties, which
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are derived from the axioms for convex and coherent measures of risk. In the work
by Kerkhof et al. [109] model risk is integrated into the computation of the capital
reserve and it is assessed as the worst case value at risk within a given class of
models. Glasserman and Xu [91] and Breuer and Csiszár [24] address model risk
as the deviation from a baseline model by considering relative entropy as models
distance. Absolute, relative and local measures for model risk are considered by [9]
for the capital calculation. Detering and Packham [59] treat model uncertainty when
dealing in the context of hedging contingent claims. In particular, they show that a
functional satisfying the assumptions for model uncertainty considered by Cont [43]
may be obtained by minimizing the squared deviation related to the overall losses of
the hedged position, for different dynamic hedging strategies varying within a certain
acceptance set.

In this particular context, the risk functional that we have introduced in order
to address the problem of portfolio representation may be understood as the time
average of a measure of model uncertainty within a given time horizon. In this
regard, it would be desirable to investigate this connection on a deepest level. As a
result, the alternative formulations that we provided for the risk functional in portfolio
representation may be considered to address model uncertainty in a profitable way
for applications in risk management.

MORTALITY RISK

The interest rate term structure and the mortality trend of the population are two
of the main factors when dealing with the valuation and the risk management of life
insurance products. In this dissertation, the problem of the optimal model points
selection for life insurance portfolios has been addressed by considering the changes
in interest rates over time as the main source risk. This means that no stochastic
fluctuation affecting the time evolution of the mortality rate has been taken into
account, and a deterministic survival trend over time for any cohorts is considered.

On the other hand, evidences that the trend of the life expectancy displays a

142



stochastic behaviour have begun to be recognized over the past decades. Details of
this matter may be found in the work by Cairns et al [36] and in the references therein.
One may refer either to mortality or longevity risk to denote the possibility faced by
the insurer to suffer losses due to unexpected changes in the long-terms life trend
displayed by the policy owners.

Based on several similarities between the force of mortality and interest rates
[15, 48, 135], many authors proposed a number of stochastic models to describe the
evolution of the mortality rate over time. We mainly refer to the Lee-Carter model
[122] and its further developments [26, 153], the so-called P-splines models [46, 47]
and the model proposed by Cairns et al. [37]. We also refer to the work by Cairns et
al. [38], for a qualitative and quantitative comparison of different stochastic mortality
models, by discussing their ability to capture historical trends of mortality.

Stochastic mortality models are also crucial when pricing mortality derivatives and
survival bonds. This class of instruments have been proposed to hedge the longevity
risk when dealing with portfolios of annuities [11, 19, 58, 133, 164, 188]. We refer to
[20] for a detailed discussion of this type of market.

As a direct consequence, a more sophisticated approach for the model points
selection should be obtained by considering the stochastic time evolution of both the
interest rate term structure and the mortality rate. In this context, the dependence
between mortality risk and interest rate risk cover a central issue. The first intent to
model this form of dependence may be traced back to the work by Jalen and Mamon
[103]. Other more recent developments may be found in [55] and [124].

LAPSE RISK

Typical life insurance contracts may involve a surrender option. This gives the policy
owner the right to decrease or suspend the insurance cover in whole or in part during
the lifetime of the contract. Details of this matter may be found in [68].

An important factor when pricing insurance products is recovered by the so-called
lapse risk, which is linked to the possibility that the policy owner decides to terminate
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the contract earlier then what expected by the insurer. Massive early surrenders may
constitute a primary liquidity threat for insurance companies and force them to sell
assets. Moreover, since surroundings have been recognized to be positively correlated
to the level of the interest rates and stocks returns [50, 117], this assets sale might
take place in the most inappropriate moment.

In addition to changes in interest rates, there are many other economic factors
such as high unemployment and recession that may trigger massive surroundings. As
described by Loisel et al. [125], contagion effects like widespread panic or circulating
rumor may increase the lapse rate within a certain community. In the work by Barsotti
et al. [10] the lapse intensity follows a dynamic contagion process as introduced in
the work by Dassios and Zhao [51] and the interest rate dynamics is considered as a
specific factor affecting the lapse decision. For other details about lapse risk we refer
to [10, 70, 126, 187] and the references therein.

Analysis of lapse risk and its treatment in model points selection is out of the
scope of this thesis. However, they could represent an interesting feature for further
development of this work.
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Resumen extenso

Esta tesis es el resultado de las actividades de investigación realizadas como estudiante
de doctorado en el Departamento de Matemáticas de la Universidade da Coruña en
el peŕıodo comprendido entre octubre de 2015 y septiembre de 2018. Este trabajo ha
sido desarrollado bajo los auspicios del proyecto Wakeupcall, financiado en el marco de
la UE Horizon2020 dentro del programa ITN-MSCA, que ha sido promovido con el fin
de contribuir en los avances que se han producido dentro de las prácticas financieras
como consecuencia de la crisis financiera de 2008.

Muchos de estos avances propiciaron el estudio de una serie de problemas en la
industria de seguros de vida, que involucran el desarrollo de modelos sofisticados. El
mercado actual de seguros de vida es mucho más complejo que en el pasado y ofrece
una amplia gama de contratos diferentes, que son dif́ıciles de distinguir correctamente
sin un conocimiento experto. Como resultado de estos desarrollos, el ajuste (match-
ing) entre los flujos de efectivo de los activos y pasivos ha adquirido una relevancia
significativa en el sector de los seguros, y además se ha vuelto progresivamente más
conectado con los mercados financieros. Hoy en d́ıa, las compañ́ıas de seguros tratan
con una gran cantidad de activos diferentes, que se negocian con el fin de cubrir
su exposición. Incluso a nivel regulatorio, el sector de seguros de vida experimentó
transformaciones drásticas destinadas a promover el bienestar general. Con el fin de
supervisar y hacer cumplir la regulación dentro del sector de seguros de la Unión

145



Europea, la European Insurance and Occupational Pensions Authority (EIOPA) se
creó en 2010 como parte del Sistema Europeo de Supervisión Financiera. Constituye
una entidad independiente que asesora a la Comisión Europea, al Parlamento Eu-
ropeo y al Consejo de la Unión Europea. Algunos cambios en la regulación dentro del
sector de seguros de vida también ha sido promovido por el Tribunal de Justicia de
las Comunidades Europeas, donde, por ejemplo, se resolvió el caso principal de Test
Achats en marzo de 2011, que proh́ıbe la discriminación basada en el género en los
precios de las pólizas.

Según la Directiva Solvencia II emitida por la Unión Europea en noviembre de
2009, que entró en vigor en enero de 2016, las compañ́ıas de seguros deben almacenar
una cantidad suficiente de fondos destinados a reducir el costo social de las posibles
pérdidas y a prevenir las posibles futuras crisis. El capital requerido refleja el riesgo
que afronta la aseguradora y debe basarse en un enfoque de valoración razonable de
los activos y los pasivos en el balance general. Según este marco, la gestión del riesgo
de mercado también desempeña un papel central en el sector de seguros. A este
respecto, la variación de la estructura temporal de los tipos de interés proporciona
una importante fuente de riesgo, ya que generalmente la mayoŕıa de los productos
comercializados por los aseguradores para cubrir su exposición abarcan desde bonos
o instrumentos de esa naturaleza hasta productos complejos que dependen del tipo
interés.

El documento de la tesis se ha dividido en dos partes.

La primera parte trata sobre temas relacionados con los estudios realizados sobre
la teoŕıa moderna de las medidas de riesgo. Esta teoŕıa comenzó con el trabajo inicial
de Artzner et al. [7], que ha tenido un gran desarrollo posterior en la última década.
Según dicho marco, el riesgo de cáıda o de pérdida de una cierta exposición se evalúa
sobre la base de la información pasada. Como consecuencia, al ampliar el conjunto de
datos históricos, la estabilidad asintótica de los estimadores de riesgo proporciona una
herramienta fundamental. En este contexto, además de la consistencia estad́ıstica,
en Cont et al. [44] se destacó que la noción de robustez cualitativa introducida por
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Hampel [97, 98] y Huber [102] es una propiedad deseable de la estabilidad asintótica
cuando se trata de estimadores de riesgo.

Se refiere a la propiedad del estimador de riesgo asociado de ser estable con re-
specto a pequeños cambios que puedan afectar a la distribución de la exposición
financiera. Nos referimos principalmente a los trabajos de Krätschmer, Schied and
Zähle [114, 115], en los que se introduce una noción de robustez cualitativa cuando
se considera una sucesión de variables aleatorias independientes e igualmente dis-
tribuidas. Por otro lado, los trabajos de Zähle [186, 184, 185] también son notables y
proporcionan una caracterización de la robustez cuando se trata de sucesiones aleato-
rias que muestran una estructura de dependencia interna. Además, en los trabajos
citados, todos los resultados obtienen al considerar un refinamiento de la medida de
la topoloǵıa débil en términos de una determinada función de evaluación, gauge, que
mide el desplazamiento de las distribuciones de sus colas. Este planteamiento es ra-
zonable en la estimación del riesgo, ya que la medida de la topoloǵıa débil carece de
sensibilidad con respecto a las colas de las distribuciones. Básicamente, esto significa
que dos leyes pueden estar bastante cerca con respecto a alguna métrica en relación
con la topoloǵıa débil y al mismo tiempo mostrar un comportamiento completamente
diferente en sus colas. Por otro lado, muchos funcionales de riesgo comunes no son
cualitativamente robustos con respecto a la medida de la topoloǵıa débil.

Uno de los objetivos principales del trabajo ha sido el desarrollo de una versión re-
finada de la robustez cualitativa que se aplica cuando se trata de sucesiones aleatorias
estacionarias, que son aquellas sucesiones cuya ley resulta invariante bajo la acción del
operador de desplazamiento (shift). Para lograr este objetivo, uno de los principales
problemas era el estudio de la convergencia de los procesos emṕıricos asociados a una
sucesión dada de variables En particular, cuando se trata de sucesiones estacionar-
ias, el ĺımite del proceso emṕırico se ha caracterizado en términos de una medida de
probabilidad aleatoria espećıfica que, además, puede considerarse como una variable
aleatoria que toma valores en una familia espećıfica de leyes. La noción propuesta
de robustez se ha presentado en términos de la acción de un endomorfismo genérico,
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que codifica una perturbación espećıfica en el espacio muestral, que se define como
la familia completa de sucesiones muestrales. Como resultado directo, obtuvimos
que esta formulación puede interpretarse como el hecho de que las pequeñas pertur-
baciones al nivel del conjunto de datos solo producen pequeñas perturbaciones en
términos de la ley asintótica de la familia de estimadores. Por otro lado, una de las
aportaciones principales del trabajo es la noción estad́ıstica refinada de robustez cual-
itativa en términos del refinamiento topológico mencionado anteriormente. Además,
al tratar con medidas aleatorias, la σ-álgebra de Borel generada por la medida de
la topoloǵıa débil posee propiedades deseables que juegan un papel central. Por lo
tanto, la caracterización de la σ-álgebra de Borel generada por la topoloǵıa refinada
citada anteriormente ha representado una caracteŕıstica principal para formular todo
el resultado de una manera adecuada.

A nivel de inferencia estad́ıstica, el resultado que presentamos admite también una
interpretación natural en términos de análisis bayesiano, ya que permanece en vigor
cuando consideramos aleatorias intercambiables, que son aquellas sucesiones cuya ley
es invariante bajo la acción de permutaciones de orden finito. De hecho, cualquier
sucesión estacionaria también es intercambiable. La intercambiabilidad proporciona el
pilar principal del enfoque bayesiano para el análisis inferencial. Más concretamente,
cuando se trata del marco no paramétrico, la ley inducida por cualquier medida
aleatoria puede considerarse como la distribución previa del modelo estad́ıstico de
referencia. La distribución a priori es el pilar principal de las estad́ısticas bayesianas
y representa el conocimiento subjetivo antes de que se lleve a cabo el experimento. De
acuerdo con dicha formulación, el resultado discutido puede considerarse como una
forma de estabilidad obtenida cuando la distribución previa del modelo se ve obli-
gada a cambiar de tal manera que se satisfagan ciertas condiciones débiles. Además,
destacamos una conexión interesante entre la noción propuesta de robustez y la de
elicitabilidad, que proporciona un aspecto ampliamente discutido en la evaluación de
predicciones puntuales, ya que puede considerarse como la forma dual de optimali-
dad en el marco de la predicción puntual. Como consecuencia de ello, muchos autores
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[81, 93, 142, 189] creen que la elicitabilidad proporciona una herramienta natural para
realizar back-testing.

El principal objetivo de la segunda parte de la tesis es el estudio del problema
de la reducción del tamaño de una cartera de pólizas de seguros con el objetivo de
su análisis y gestión, de modo que los riesgos inherentes se mantengan correctamente
representados al reducir el tamaño. A las compañ́ıas europeas de seguros se les ha re-
querido que evalúen sus carteras aśı como que realicen los análisis de sensibilidad para
demostrar la validez de sus modelos, considerando proyecciones de flujos de caja en
una aproximación póliza a póliza. Además, se les permite calcular estas proyecciones
reemplazando cualquier grupo homogéneo de pólizas por un contrato representativo
adecuado, lo que se conoce como model points. Este procedimiento se utiliza para
acelerar el proceso, que se lleva a cabo dirariamente, ya que la complejidad de tratar
toda la cartera puede conducir a tiempos de cálculo muy extensos y prohibitivos.
Esta técnica de reemplazar la toda la cartera por otra cartera está permitida siempre
que la estructura del riesgo subyacente de la cartera inicial se mantenga en la nueva
cartera.

En este trabajo hemos comenzado por caracterizar este problema como el de la
sustitución eficiente de una cartera por otra simple con riesgos similares. Además, es
razonable asumir que la cartera más simple debe verificar ciertas restricciones. Hemos
llamado a este problema con el término de representación de carteras. Por ejemplo,
encontramos este problema cuando definimos una estrategia de cobertura sujeta a
restricciones de poĺıtica y presupuesto. Otro ejemplo de este problema surge cuando
se busca reducir la escala, y por tanto la complejidad, de una cartera espećıfica con el
objetivo de analizarla y gestionarla, sin perder la representación de su estructura de
riesgos inherentes. Abordamos este problema definiendo un concepto razonable de op-
timalidad basado en un criterio espećıfico de comparación. En concreto, presentamos
una aproximación basada en la minimización de cierto funcional de riesgo, que mide
la discrepancia media entre la cartera original y cualquier cartera candidata entre las
más simples que representan su exposición. En particular, el riesgo se ha medido en
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función de los factores de riesgo subyacentes dentro de un horizonte temporal.

En las pasadas décadas, muchos resultados de integración estocástica en espacios
de Hilbert se han generalizado al marco de los espacios de Banach. Una teoŕıa de la
integración estocástica para procesos tomando valores en espacios de Banach se ha
propuesto inicialmente para espacios con martingalas de tipo 2, tal y como se presenta
en los trabajos desarrollados en Dettweiler [60, 61], Neidhardt [139] y Ondreját [141].
Algunos de los autores citados han desarrollado la teoŕıa de integración estocástica en
los llamados espacios de Banach 2-uniformemente regulares. Además, en Pisier [145]
se prueba que la propiedad de martingala de tipo 2 es equivalente a la regularidad 2-
uniforme. Brzeźniak [28, 29, 30, 27] continuó desarrollando las integrales estocásticas
de Neidhardt y Dettweiler proporcionando algunas aplicaciones a la teoŕıa de las
ecuaciones diferenciales parciales estocásticas. En una ĺınea diferente, Garling [88]
y McConnell [134] explotaron la definición probabiĺıstica de los llamados espacios
de Banach UMD introducidos por Burkholder [32] y Bourgain [23] para proponer
una teoŕıa de cálculo estocástico en esta clase de espacios. Las ideas propuestas por
Garling y McConnell han sido extendidas ampliamente por van Neerven, Veraar y
Weis [173, 174, 177], obteniendo algunas aplicaciones muy relevantes de esta teoŕıa al
estudio de las ecuaciones en derivadas parciales estocásticas [170, 176, 175, 31].

Motivados por estos desarrollos, algunos autores generalizaron muchos de los con-
ceptos habituales del cálculo de Malliavin al marco de los espacios de Banach. En la
presente tesis hemos revisado el trabajo de Maas y van Neerven [128], en el cual la
fórmula de representación de Clark-Ocone se presenta cuando tratamos con variables
aleatorias que toman valores en un espacio de Banach de tipo UMD.

En ĺınea con los avances descritos anteriormente, en esta tesis hemos modelado las
dinámicas de los factores de riesgo como procesos de difusión en un cierto espacio de
Banach y después proponemos dos formulaciones diferentes del funcional antes citado
en el marco de la teoŕıa de integración estocástica en espacios UMD desarrollada por
Van Neerven, Veraar y Weis [173, 174, 177].

La primera formulación se plantea en términos del operador derivada de Malliavin.
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En particular, el criterio que hemos obtenido resulta ser similar al planteamiento de
minimización sugerido en [110] para abordar el problema de cobertura de carteras de
bonos, en los que se maneja un concepto refinado de duración de un bono introducido
mediante el cálculo de Malliavin para campos aleatorios gaussianos en el marco de
espacios de Hilbert. La duración es una herramienta que se ha utilizado durante
mucho tiempo en el ámbito de los mercados de renta fija, ya que proporciona la
sensibilidad de una cartera a las fluctuaciones de los tipos de interés.

La segunda formulación se ha obtenido bajo condiciones adicionales sobre el mod-
elo y fundamentalmente involucra la componente difusiva de la dinámica de la curva
de descuento. En particular, esta representación admite una interpretación muy in-
teresante en términos de una condición generalizada de consistencia del mercado. En
relación con estos desarrollos, la formulación de una teoŕıa de carteras en el marco de
un espacio de Banach ha representado un primer objetivo.

En relación con estos desarrollos, un primer objetivo era la formulación de una
teoŕıa de carteras en el marco de un espacio de Banach. Un ejemplo interesante en este
marco se ha obtenido discutiendo cómo estos argumentos pueden ser aplicados en el
mercado de renta fija, cuando se analiza el problema de encontrar una representación
óptima de una cartera fija de activos considerando una cartera de bonos cupón cero.
En este sentido, consideramos una dinámica infinito dimensional que gobierna la
evolución estocástica de la curva de precios. Es más, de acuerdo con los modelos
clásicos, las dinámicas infinito dimensionales se consideran para capturar la tendencia
estocástica de la estructura de tipos de interés a lo largo del tiempo. Es importante
mencionar que muchos autores han desarrollado una teoŕıa de carteras de bonos en el
marco de espacios de Hilbert de dimensión infinita (ver [39, 40, 69, 156], por ejemplo).

Como ejemplo particular de esta aplicación, hemos estudiado el caso en el que
una cartera de productos dependientes del tipo de interés se representa mediante
una cartera compuesta por un único bono cupón cero. Como consecuencia directa,
se recupera una noción más refinada de duración cuando se minimiza el funcional de
riesgo explicado anteriormente. Este último planteamiento ha resultado muy relevante
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por su conexión con el problema de selección de model points De hecho, cuando se
trata con carteras de pólizas, una de las principales fuentes de riesgo surge de las
fluctuaciones de los tipos de interés con el tiempo. Nosotros hemos presentado una
teoŕıa general de carteras de pólizas en el marco de un espacio de Banach, en el cual la
cuestión de la selección óptima de model points se ha evaluado en relación al problema
de representación de carteras previamente analizado desde un punto de vista teórico.

Se ha puesto un énfasis especial en el caso de toda la cartera de pólizas de seguros,
que por definición pagan una suma de todos los beneficios en caso de fallecimiento del
poseedor de la póliza. En este caso particular, el criterio de minimización que hemos
obtenido es similar al que se basaba en la duración de la cartera en el mercado de
renta fija.

Por otro lado, desde el punto de vista numérico, la minimización del funcional de
riesgo que hemos introducido para resolver el problema de representación de carteras
puede resultar muy intensivo computacionalmente, ya que normalmente conduce a un
problema de minimización global en alta dimensión. Los algoritmos de optimización
deterministas, como el método de optimización local del gradiente, resultan ser com-
putacionalmente eficientes. Algunos ejemplos de este tipo de algoritmos son pattern
search o algoritmos basados en el gradiente como el gradiente conjugado no lineal
(NCG), BFGS, L-BFGS (descritos en [123], por ejemplo) o L-BFGS-B (ver [35], por
ejemplo). Por otro lado, cuando consideramos problemas de optimización global,
los algoritmos de optimización local anteriores pueden terminar convergiendo hacia
mı́nimos locales, que no proporcionan la solución del problema planteado. Este incon-
veniente puede ser solventado mediante la utilización de algoritmos de optimización
estocásticos,como por ejemplo Simulated Annealing (SA). Aunque la convergencia de
estos algoritmos de optimización estocásticos es lenta en general, tienen la ventaja de
que descartan los mı́nimos locales y evitan el quedarse atrapados en soluciones locales
del problema.

Una posibilidad para obtener algoritmos de optimización global más rápidos que
ha sido considerada en esta tesis es el uso de algoritmos h́ıbridos, que combinan
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los algoritmos de optimización estocásticos con los métodos locales de optimización.
Un ejemplo de esta clase de algoritmos es el algoritmo de Basin Hopping (BH), en
el cual el algoritmo global estocástico de SA se emplea para muestrear el espacio,
generando puntos vecinos de manera aleatoria, y se combina con algoritmos locales
de tipo gradiente para capturar capturar el mı́nimo partiendo inicialmente de uno
de esos vecinos generados por el muestreo estocástico. Estos algoritmos se analizan
en los trabajos [78, 181]. Por otro lado, el coste computacional de los algoritmos
resultantes se ha gestionado mediante una paralelización eficiente en las arquitecturas
de ordenadores adecuadas.

En relación con estos últimos aspectos computacionales, se ha presentado un estu-
dio numérico para analizar el comportamiento de las metodoloǵıas propuestas cuando
se aplican a una cartera grande de contratos de seguros asociados a tipos de interés,
es decir, los contratos pagan una suma de beneficios en caso de fallecimiento del
poseedor de la póliza, siempre que esto ocurra antes de un tiempo determinado. En
esta aplicación, se usa un modelo de mercado (LIBOR Market Model, LMM) para
simular la evolución estocástica de los tipos forward en el tiempo. El LMM se utiliza
mucho en la práctica, pues presenta la ventaja de poder ser calibrado a mercado de
modo consistente.

El contenido de esta tesis doctoral se ha organizado en dos partes.

La Parte I contiene las aportaciones que se han llevado a cabo en el marco de la
teoŕıa moderna de medidas de riesgo y de estimación robusta del riesgo.

En el Capitulo 2 se revisan brevemente los resultados de convergencia que motivan
los problemas que se abordan en los siguientes caṕıtulos. Se pone especial énfasis en la
noción de topoloǵıa débil y en las formas comunes de simetŕıa en probabilidad, como
por ejemplo la estacionaridad (stationarity) y la intercambiabilidad (exchangeability).

En el Capitulo 3 se presenta una revisión particular de la teoŕıa moderna de
medidas de riesgo, basada fundamentalmente en las referencias que se citan en este
caṕıtulo. Se ha dedicado una atención especial al concepto de robustez cualitativa en
estimación del riesgo.
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El Caṕıtulo 4 se basa fundamentalmente en los contenidos del trabajo [75], excepto
la Sección 4.1, que no forma parte de ese trabajo y que representa el desarrollo
de diferentes resultados de la literatura, que se encontraron adecuados por razones
de completitud del caṕıtulo. En este caṕıtulo se introduce una noción refinada de
robustez cualitativa que se deriva a partir del concepto de consistencia estad́ıstica en
términos de medidas de probabilidad aleatoria.

La Parte II de la tesis trata del problema de representación de carteras, con
atención especial a las que aparecen en el sector de seguros de vida.

En el Caṕıtulo 5 se recogen los resultados fundamentales de la teoŕıa de integración
estocástica en espacios de Banach, con una cierta revisión sobre la literatura en el
tema. Esta revisión se basa en las referencias citadas en este caṕıtulo. Aunque la
mayor parte de los resultados son conocidos, en la Sección 5.4 se han analizado y
demostrado aquellos que no se encontraron en la forma adecuada en la literatura.

Los Caṕıtulos 6 y 7 incluyen resultados originales basados en el trabajo [79]. En
concreto, en el Caṕıtulo 6 se aborda el problema de representación de carteras en el
marco de la teoŕıa de integración estocástica en espacios de Banach, mientras que en
el Caṕıtulo 7 se analiza este planteamiento cuando se tratan carteras de seguros de
vida, haciendo especial énfasis en carteras compuestas de pólizas de seguros de vida
(whole life insurance policies).

El Caṕıtulo 8 se basa en el trabajo [76]. En concreto, contiene un estudio numérico
de la aproximación planteada en el caṕıtulo anterior cuando se aplica a carteras de
seguros a plazo, considerando el LMM como modelo para describir la evolución en el
tiempo de la estructura de tipos de interés forward.

Finalmente, se incluye un apartado en el que se analizan algunos problemas abier-
tos y se plantean ideas de posibles ĺıneas futuras de investigación.
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Resumo extenso

Esta tese é o resultado das actividades de investigación realizadas como estudante
de doutoramento no Departamento de Matemáticas da Universidade dá Coruña no
peŕıodo comprendido entre outubro de 2015 e setembro de 2018. Este traballo foi
desenvolto baixo os auspicios do proxecto Wakeupcall, financiado no marco da UE
Horizon2020 dentro do programa ITN- MSCA, que foi promovido co fin de contribúır
nos avances que se produciron dentro das prácticas financeiras como consecuencia da
crise financeira de 2008.

Moitos destes avances propiciaron o estudo dunha serie de problemas na industria
de seguros de vida, que involucran o desenvolvemento de modelos máis sofistica-
dos. O mercado actual de seguros de vida é moito máis complexo que no pasado e
ofrece unha ampla gama de contratos diferentes, que son dif́ıciles de distinguir cor-
rectamente sen un coñecemento experto. Como resultado destes desenvolvementos, o
axuste (matching) entre os fluxos de efectivo dos activos e pasivos adquiriu unha rel-
evancia significativa no sector dos seguros, e ademais volveuse progresivamente máis
conectado cos mercados financeiros. Hoxe en d́ıa, as compañ́ıas de seguros tratan
cunha gran cantidade de activos diferentes, que se negocian co fin de cubrir a súa
exposición. Mesmo a nivel regulatorio, o sector de seguros de vida experimentou
transformacións drásticas destinadas a promover o benestar xeral. Co fin de super-
visar e facer cumprir a regulación dentro do sector de seguros da Unión Europea, a
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European Insurance and Occupational Pensions Authority ( EIOPA) creouse en 2010
como parte do Sistema Europeo de Supervisión Financeira. Constitúe unha entidade
independente que asesora á Comisión Europea, ao Parlamento Europeo e ao Consello
da Unión Europea. Algúns cambios na regulación dentro do sector de seguros de vida
tamén foi promovido polo Tribunal de Xustiza das Comunidades Europeas onde, por
exemplo, resolveuse o caso principal de Test Achats en marzo de 2011, que prohibe a
discriminación baseada no xénero nos prezos das pólizas.

Segundo a Directiva Solvencia II emitida pola Unión Europea en novembro de
2009, que entrou en vigor en xaneiro de 2016, as compañ́ıas de seguros deben al-
macenar unha cantidade suficiente de fondos destinados a reducir o custo social das
posibles perdas e a previr as posibles futuras crises. O capital requirido reflicte o
risco que afronta a aseguradora e debe basearse nun enfoque de valoración razoable
dos activos e os pasivos no balance xeral. Segundo este marco, a xestión do risco de
mercado tamén desempeña un papel central no sector de seguros. A este respecto, a
variación da estrutura temporal dos tipos de xuro proporciona unha importante fonte
de risco, xa que xeralmente a maioŕıa dos produtos comercializados polas asegurado-
ras para cubrir a súa exposición abarcan desde bonos ou instrumentos desa natureza
ata produtos complexos que dependen do tipo de xuro.

O documento da tese organizóuse en dúas partes.

A primeira parte trata sobre temas relacionados cos estudos realizados sobre a
teoŕıa moderna das medidas de risco. Esta teoŕıa comezou co traballo inicial de
Artzner et al. [7], que tivo un gran desenvolvemento posterior na última década.
Segundo o devandito marco, o risco de perda dunha certa exposición avaĺıase sobre
a base da información pasada. Como consecuencia, ao ampliar o conxunto de datos
históricos, a estabilidade asintótica dos estimadores de risco proporciona unha fer-
ramenta fundamental. Neste contexto, ademais da consistencia estat́ıstica, en Cont
et al. [44] destácase que a noción de robustez cualitativa introducida por Hampel
[97, 98] e Huber [102] é unha propiedade desexable da estabilidade asintótica cando
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se trata de estimadores de risco. Ref́ırese á propiedade do estimador de risco asoci-
ado de ser estable con respecto a pequenos cambios que poidan afectar á distribución
da exposición financeira. Refeŕımonos principalmente aos traballos de Krätschmer,
Schied e Zähle [114, 115], nos que se introduce unha noción de robustez cualitativa
cando se considera unha sucesión de variables aleatorias independentes e igualmente
distribúıdas. Doutra banda, os traballos de Zähle [186, 184, 185] tamén son notables
e proporcionan unha caracterización da robustez cando se trata de sucesións aleato-
rias que mostran unha estrutura de dependencia interna. Ademais, nos traballos
citados, todos os resultados obtéñense ao considerar un refinamento da medida da
topolox́ıa feble en termos dunha determinada función de avaliación, gauge, que mide
o desprazamento das distribucións nas súas colas. Esta formulación é razoable na
estimación do risco, xa que a medida da topolox́ıa feble carece de sensibilidade con
respecto ás colas das distribucións. Basicamente, isto significa que dúas leis poden
estar bastante preto con respecto a algunha métrica en relación coa topolox́ıa feble e
ao mesmo tempo mostrar un comportamento completamente diferente nas súas colas.
Doutra banda, moitos funcionais de risco comúns non son cualitativamente robustos
con respecto á medida da topoloǵıa feble.

Un dos obxectivos principais do traballo foi o desenvolvemento dunha versión re-
finada da robustez cualitativa que se aplica cando se trata de sucesións aleatorias
estacionarias, que son aquelas sucesións cuxa lei resulta invariante baixo a acción
do operador de desprazamento (shift). Para acadar este obxectivo, un dos princi-
pais problemas era o estudo da converxencia dos procesos emṕıricos asociados a unha
sucesión dada de variables. En particular, cando se trata de sucesións estacionarias, o
ĺımite do proceso emṕırico caracterizouse en termos dunha medida de probabilidade
aleatoria espećıfica que, ademais, pode considerarse como unha variable aleatoria que
toma valores nunha familia espećıfica de leis. A noción proposta de robustez presen-
touse en termos da acción dun endomorfismo xenérico, que codifica unha perturbación
espećıfica no espazo muestral, que se define como a familia completa de sucesións
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muestrales. Como resultado directo, obtivemos que esta formulación pode interpre-
tarse como o feito de que as pequenas perturbacións ao nivel do conxunto de datos
só producen pequenas perturbacións en termos da lei asintótica da familia de esti-
madores. Doutra banda, unha das achegas principais do traballo é a noción estat́ıstica
refinada de robustez cualitativa, en termos do refinamento topolóxico mencionado an-
teriormente. Ademais, ao tratar con medidas aleatorias, o σ-álxebra de Borel xerada
pola medida da topolox́ıa feble posúe propiedades desexables que xogan un papel
central. Por tanto, a caracterización do σ-álxebra de Borel xerada pola topolox́ıa re-
finada citada anteriormente representou unha caracteŕıstica principal para formular
todo o resultado dunha maneira axeitada.

A nivel de inferencia estat́ıstica, o resultado que presentamos admite tamén unha
interpretación natural en termos de análises bayesiano, xa que permanece en vigor
cando consideramos sucesións aleatorias intercambiables, que son aquelas sucesións
cuxa lei é invariante baixo a acción de permutacións de orde finito. De feito, calquera
sucesión estacionaria tamén é intercambiable. A intercambiabilidade proporciona o
alicerce principal do enfoque bayesiano para a análise inferencial. Máis concretamente,
cando se trata do marco non paramétrico, a lei inducida por calquera medida aleato-
ria pode considerarse como a distribución previa do modelo estat́ıstico de referencia.
A distribución a priori é o alicerce principal da estat́ıstica bayesiana e representa o
coñecemento subxectivo antes de que se leve a cabo o experimento. Dacordo con dita
formulación, o resultado discutido pode considerarse como unha forma de estabilidade
obtida cando a distribución previa do modelo vese obrigada a cambiar de tal maneira
que se satisfagan certas condicións febles. Ademais, destacamos unha conexión in-
teresante entre a noción proposta de robustez e a de elicitabilidade, que proporciona
un aspecto amplamente discutido na avaliación de predicións puntuais, xa que pode
considerarse como a forma dual de optimalidade no marco da predición puntual.
Como consecuencia diso, moitos autores [81, 93, 142, 189] cren que a elicitabilidade
proporciona unha ferramenta natural para realizar back-testing.

O principal obxectivo da segunda parte da tese é o estudo do problema da redución
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do tamaño dunha carteira de pólizas de seguros co obxectivo da súa análise e xestión,
de modo que os riscos inherentes mantéñanse correctamente representados ao reducir o
tamaño. Ás compañ́ıas europeas de seguros requiŕıuselles que avaĺıen as súas carteiras
aśı como que realicen as análises de sensibilidade para demostrar a validez dos seus
modelos, considerando proxeccións de fluxos de caixa nunha aproximación póliza a
póliza. Ademais, permı́teselles calcular estas proxeccións substitúındo calquera grupo
homoxéneo de pólizas por un contrato representativo adecuado, o que se coñece como
model points. Este procedemento utiĺızase para acelerar o proceso, que se leva a cabo
diariamente, xa que a complexidade de tratar toda a carteira pode conducir a tempos
de cálculo moi longos e prohibitivos. Esta técnica de substitúır toda a carteira por
outra carteira está permitida sempre que a estrutura do risco subxacente da carteira
inicial mantéñase na nova carteira.

Neste traballo comezamos por caracterizar este problema como o da substitución
eficiente dunha carteira por outra simple con riscos similares. Ademais, é razoable
asumir que a carteira máis simple debe verificar certas restricións. Chamamos a este
problema co termo de representación de carteiras. Por exemplo, atopamos este prob-
lema cando definimos unha estratexia de cobertura suxeita a restricións de poĺıtica e
orzamento. Outro exemplo deste problema xorde cando se busca reducir a escala, e
por tanto a complexidade, dunha carteira espećıfica co obxectivo de analizala e xes-
tionala, sen perder a representación da súa estrutura de riscos inherentes. Abordamos
este problema definindo un concepto razoable de optimalidade baseado nun criterio
espećıfico de comparación. En concreto, presentamos unha aproximación baseada
na minimización de certo funcional de risco, que mide a discrepancia media entre a
carteira orixinal e calquera carteira candidata entre as máis simples que representan
a súa exposición. En particular, o risco mediuse en función dos factores de risco
subxacentes dentro dun horizonte temporal.

Nas pasadas décadas, moitos resultados de integración estocástica en espazos de
Hilbert xeneralizáronse ao marco dos espazos de Banach. Unha teoŕıa da integración
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estocástica para procesos tomando valores en espazos de Banach propúxose inicial-
mente para espazos con martingalas de tipo 2, tal e como se presenta nos traballos
desenvoltos en Dettweiler [60, 61], Neidhardt [139] e Ondreját [141]. Algúns dos
autores citados desenvolveron a teoŕıa de integración estocástica nos chamados espa-
zos de Banach 2- uniformemente regulares. Ademais, en Pisier [145] próbase que a
propiedade de martingala de tipo 2 é equivalente á regularidade 2-uniforme. Brzézniak
[28, 29, 30, 27] continuou desenvolvendo as integrais estocásticas de Neidhardt e Det-
tweiler proporcionando algunhas aplicacións á teoŕıa das ecuacións diferenciais par-
ciais estocásticas. Nunha liña diferente, Garling [88] e McConnell [134] explotaron
a definición probabiĺıstica dos chamados espazos de Banach UMD introducidos por
Burkholder [32] e Bourgain [23] para propoñer unha teoŕıa de cálculo estocástico
nesta clase de espazos. As ideas propostas por Garling e McConnell foron estendi-
das amplamente por van Neerven, Veraar e Weis [173, 174, 177], obtendo algunhas
aplicacións moi relevantes desta teoŕıa ao estudo das ecuacións en derivadas parciais
estocásticas [170, 176, 175, 31]. Motivados por estes desenvolvementos, algúns au-
tores xeneralizaron moitos dos conceptos habituais do cálculo de Malliavin ao marco
dos espazos de Banach. Na presente tese tamén revisamos o traballo de Maas e van
Neerven [128], no cal a fórmula de representación de Clark- Ocone preséntase cando
tratamos con variables aleatorias que toman valores nun espazo de Banach de tipo
UMD.

En liña cos avances descritos anteriormente, nesta tese modelamos as dinámicas
dos factores de risco como procesos de difusión nun certo espazo de Banach e despois
propoñemos dúas formulacións diferentes do funcional antes citado no marco da teoŕıa
de integración estocástica en espazos UMD desenvolta por van Neerven, Veraar e Weis
[173, 174, 177].

A primeira formulación exponse en termos do operador derivada de Malliavin. En
particular, o criterio que obtivemos resulta ser similar á formulación de minimización
suxerido en [110] para abordar o problema de cobertura de carteiras de bonos, nos
que se manexa un concepto refinado de duración dun bono introducido mediante
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o cálculo de Malliavin para campos aleatorios gaussianos no marco de espazos de
Hilbert. A duración é unha ferramenta que se utilizou durante moito tempo no
ámbito dos mercados de renda fixa, xa que proporciona a sensibilidade dunha carteira
ás fluctuaciones dos tipos de xuro.

A segunda formulación obt́ıvose baixo condicións adicionais sobre o modelo e
fundamentalmente involucra a compoñente difusiva da dinámica da curva de desconto.
En particular, esta representación admite unha interpretación moi interesante en
termos dunha condición xeneralizada de consistencia do mercado. En relación con
estes desenvolvementos, a formulación dunha teoŕıa de carteiras no marco dun espazo
de Banach representou un primeiro obxectivo.

En relación con estes desenvolvementos, un primeiro obxectivo era a formulación
dunha teoŕıa de carteiras no marco dun espazo de Banach. Un exemplo interesante
neste marco obt́ıvose discutindo como estes argumentos poden ser aplicados no mer-
cado de renda fixa, cando se analiza o problema de atopar unha representación óptima
dunha carteira fixa de activos considerando unha carteira de bonos cupón cero. Neste
sentido, consideramos unha dinámica infinito dimensional que goberna a evolución es-
tocástica da curva de prezos. É máis, de acordo cos modelos clásicos, as dinámicas
infinito dimensionais considéranse para capturar a tendencia estocástica da estrutura
de tipos de xuro ao longo do tempo. É importante mencionar que moitos autores
desenvolveron unha teoŕıa de carteiras de bonos no marco de espazos de Hilbert de
dimensión infinita (ver [39, 40, 69, 156], por exemplo).

Como exemplo particular desta aplicación, estudamos o caso no que unha carteira
de produtos dependentes do tipo de xuro represéntase mediante unha carteira com-
posta por un único bono cupón cero. Como consecuencia directa, recupérase unha
noción máis refinada de duración cando se minimiza o funcional de risco explicado
anteriormente.

Esta última formulación resultou moi relevante pola súa conexión co problema
de selección de model points. De feito, cando se trata con carteiras de pólizas, unha
das principais fontes de risco xorde das variacions dos tipos de xuro co tempo. Nós
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presentamos unha teoŕıa xeral de carteiras de pólizas no marco dun espazo de Banach,
no cal a cuestión da selección óptima de model points avaliouse en relación ao problema
de representación de carteiras previamente analizado desde un punto de vista teórico.

Púxose unha énfase especial no caso de toda a carteira de pólizas de seguros, que
por definición pagan unha suma de todos os beneficios en caso de falecemento do
posuidor da póliza. Neste caso particular, o criterio de minimización que obtivemos
é similar ao que se baseaba na duración da carteira no mercado de renda fixa.

Doutra banda, desde o punto de vista numérico, a minimización do funcional
de risco que introducimos para resolver o problema de representación de carteiras
pode resultar moi intensivo computacionalmente, xa que normalmente conduce a un
problema de minimización global en alta dimensión. Os algoritmos de optimización
deterministas, como o método de optimización local do gradiente, resultan ser com-
putacionalmente eficientes. Algúns exemplos deste tipo de algoritmos son pattern
search ou algoritmos baseados no gradiente como o gradiente conxugado non lin-
eal (NCG), BFGS, L- BFGS (descritos en [123], por exemplo) ou L- BFGS- B (ver
[35], por exemplo). Doutra banda, cando consideramos problemas de optimización
global, os algoritmos de optimización local anteriores poden terminar converxendo
cara a mı́nimos locais, que non proporcionan a solución do problema plantexado.
Este inconveniente pode ser resolto mediante a utilización de algoritmos de opti-
mización estocásticos, por exemplo Simulated Annealing (SA). Aı́nda que a converx-
encia destes algoritmos de optimización estocásticos é lenta en xeral, teñen a vantaxe
de que descartan os mı́nimos locais e evitan o quedar atrapados en solucións locais
do problema.

Unha posibilidade para obter algoritmos de optimización global máis rápidos que
foi considerada nesta tese é o uso de algoritmos h́ıbridos, que combinan os algoritmos
de optimización estocásticos cos métodos locais de optimización. Un exemplo desta
clase de algoritmos é o algoritmo de Basin Hopping (BH), no cal o algoritmo global
estocástico de SA emprégase para muestrear o espazo, xerando puntos veciños de
maneira aleatoria, e comb́ınase con algoritmos locais de tipo gradiente para capturar
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o mı́nimo partindo inicialmente dun deses veciños xerados pola mostraxe estocástica.
Estes algoritmos anaĺızanse nos traballos [78, 181]. Doutra banda, o custo computa-
cional dos algoritmos resultantes xestionouse mediante unha paralelización eficiente
nas arquitecturas de computadores axeitadas.

En relación con estes últimos aspectos computacionais, presentouse un estudo
numérico para analizar o comportamento das metodolox́ıas propostas cando se aplican
a unha carteira grande de contratos de seguros asociados a tipos de xuro, é dicir,
os contratos pagan unha suma de beneficios en caso de falecemento do posuidor
da póliza, sempre que isto ocorra antes dun tempo determinado. Nesta aplicación,
úsase un modelo de mercado (LIBOR Market Model, LMM) para simular a evolución
estocástica dos tipos forward no tempo. O LMM utiĺızase moito na práctica, pois
presenta a vantaxe de poder ser calibrado a mercado de modo consistente.

O contido desta tese doutoral organizouse en dúas partes.

A Parte I contén as achegas que se levaron a cabo no marco da teoŕıa moderna
de medidas de risco e de estimación robusta do risco.

No Caṕıtulo 2 rev́ısanse brevemente os resultados de converxencia que motivan os
problemas que se abordan nos seguintes caṕıtulos. Ponse especial énfase na noción
de topolox́ıa feble e nas formas comúns de simetŕıa en probabilidade, por exemplo a
estacionaridade (stationarity) e a intercambiabilidade (exchangeability).

No Caṕıtulo 3 preséntase unha revisión particular da teoŕıa moderna de medi-
das de risco, baseada fundamentalmente nas referencias que se citan neste caṕıtulo.
Dedicouse unha atención especial ao concepto de robustez cualitativa en estimación
do risco.

O Caṕıtulo 4 baséase fundamentalmente nos contidos do traballo [75], excepto a
Sección 4.1, que non forma parte dese traballo e que representa o desenvolvemento
de diferentes resultados da literatura, que se atoparon axeitados por razóns de com-
pletitude do caṕıtulo. Neste caṕıtulo introdúcese unha noción refinada de robustez
cualitativa que se deriva a partir do concepto de consistencia estat́ıstica en termos de
medidas de probabilidade aleatoria.
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A Parte II da tese trata do problema de representación de carteiras, con atención
especial ás que aparecen no sector de seguros de vida.

No Caṕıtulo 5 recóllense os resultados fundamentais da teoŕıa de integración es-
tocástica en espazos de Banach, cunha certa revisión sobre a literatura no tema. Esta
revisión baséase nas referencias citadas neste caṕıtulo. Aı́nda que a maior parte dos
resultados son coñecidos, na Sección 5.4 analizáronse e demostráronse aqueles que
non se atoparon na forma axeitada na literatura.

Os Caṕıtulos 6 e 7 inclúen resultados orixinais baseados no traballo [79]. En con-
creto, no Caṕıtulo 6 abórdase o problema de representación de carteiras no marco da
teoŕıa de integración estocástica en espazos de Banach, mentres que no Caṕıtulo 7
anaĺızase esta formulación cando se tratan carteiras de seguros de vida, facendo espe-
cial énfase en carteiras compostas de pólizas de seguros de vida (whole life insurance
policies).

O Caṕıtulo 8 baséase no traballo [76]. En concreto, contén un estudo numérico
da aproximación exposta no caṕıtulo anterior cando se aplica a carteiras de seguros
a prazo, considerando o LMM como modelo para describir a evolución no tempo da
estrutura de tipos de xuro forward.

Finalmente, inclúese un apartado no que se analizan algúns problemas abertos e
exponse ideas de posibles liñas futuras de investigación.
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[31] Zdzislaw Brzeźniak, Jan M.A.M. van Neerven, Mark C. Veraar, and Lutz Weis.
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[158] Andrzej Ruszczyński and Alexander Shapiro. Optimization of convex risk func-
tions. Mathematics of operations research, 31(3):433–452, 2006.

[159] Czes law Ryll-Nardzewski. On stationary sequences of random variables and
the de Finetti’s equivalence. In Colloquium Mathematicae, volume 4, pages
149–156. Institute of Mathematics Polish Academy of Sciences, 1957.

[160] Hiroshi Satô. Gaussian measure on a Banach space and Abstract Winer mea-
sure. Nagoya Mathematical Journal, 36:65–81, 1969.

[161] Irving E. Segal. Tensor algebras over Hilbert spaces. I. Transactions of the
American Mathematical Society, 81(1):106–134, 1956.

[162] Alexander Shapiro. On Kusuoka representation of law invariant risk measures.
Mathematics of Operations Research, 38(1):142–152, 2013.

[163] Alexander Shapiro and Darinka Dentcheva. Lectures on stochastic program-
ming: modeling and theory, volume 16. SIAM, 2014.

180



[164] Yang Shen and Tak Kuen Siu. Longevity bond pricing under stochastic in-
terest rate and mortality with regime-switching. Insurance: Mathematics and
Economics, 52(1):114–123, 2013.

[165] S. Sinai, Ya. Dynamical System II: Ergodic Theory with Applications to Dy-
namical Systems and Statistical Mechanics. Springer-Verlag Berlin Heidelberg,
1989.

[166] Yongsheng Song and Jia-An Yan. Risk measures with comonotonic subadditiv-
ity or convexity and respecting stochastic orders. Insurance: Mathematics and
Economics, 45(3):459–465, 2009.

[167] Volker Strassen. The existence of probability measures with given marginals.
The Annals of Mathematical Statistics, pages 423–439, 1965.

[168] Dirk Tasche. Expected shortfall and beyond. Journal of Banking & Finance,
26(7):1519–1533, 2002.

[169] Ramon van Handel. The universal Glivenko–Cantelli property. Probability The-
ory and Related Fields, pages 1–24, 2013.

[170] Jan van Neerven, Mark C. Veraar, and Lutz Weis. Stochastic maximal Lp-
regularity. The Annals of Probability, 40(2):788–812, 2012.

[171] Jan M.A.M. van Neerven. Stochastic evolution equations. ISEM lecture notes,
2008.

[172] Jan M.A.M. van Neerven. γ-Radonifying operators–a survey. arXiv preprint
arXiv:0911.3788, 2009.

[173] Jan M.A.M. van Neerven, Mark C. Veraar, and Lutz Weis. Conditions for
stochastic integrability in UMD Banach spaces. Banach spaces and their appli-
cations in analysis (in honor of Nigel Kalton’s 60th birthday), pages 127–146,
2007.

181



[174] Jan M.A.M. van Neerven, Mark C. Veraar, and Lutz Weis. Stochastic inte-
gration in UMD Banach spaces. The Annals of Probability, 35(4):1438–1478,
2007.

[175] Jan M.A.M. van Neerven, Mark C. Veraar, and Lutz Weis. Stochastic evolution
equations in UMD Banach spaces. arXiv preprint arXiv:0804.0932, 2008.

[176] Jan M.A.M. van Neerven, Mark C. Veraar, and Lutz Weis. Stochastic maximal
Lp-regularity. The Annals of Probability, 40(2):788–812, 2012.

[177] Jan M.A.M. van Neerven and Lutz Weis. Stochastic integration of functions
with values in a Banach space. Studia Mathematica, 166:131–170, 2005.

[178] Jan M.A.M. van Neerven and Lutz Weis. Weak limits and integrals of Gaussian
covariances in Banach spaces. Probability and mathematical statistics, 25(1):55,
2005.

[179] Veeravalli S. Varadarajan. On the convergence of sample probability distribu-
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