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Abstract

We propose a numerical algorithm for backward stochastic differential equations based on
time discretization and trigonometric wavelets. This method combines the effectiveness of
Fourier-based methods and the simplicity of a wavelet-based formula, resulting in an algorithm
that is both accurate and easy to implement. Furthermore, we mitigate the problem of errors
near the computation boundaries by means of an antireflective boundary technique, giving an
improved approximation. We test our algorithm with different numerical experiments.

1 Introduction

Ever since the general notion of backward stochastic differential equations (BSDEs) was introduced
in [15], it has been a popular research subject. Especially in mathematical finance and insurance,
BSDEs are powerful tools for the valuation of a contingent claim, both under usual complete market
setting or with the incorporation of market imperfections and collateral requirements.

Finding an analytic solution for such equations is often difficult or even impossible, either
by directly solving or by transforming the problems into partial differential equations (see [16]).
Therefore, numerical methods are in great demand. While the majority of so-called probabilistic
methods for solving BSDEs relies on time discretization of the stochastic process, they differ by
the methods for calculating the appearing conditional expectations. Techniques used include least-
squares Monte Carlo regression in [12], chaos decomposition formulas in [5], cubature methods
in [6], among others. In particular, we are interested in methods based on Fourier series. These
methods link the computation of the expectations to the characteristic function of the transitional
probability density function, which is either given or easy to approximate. One particular method
is the BCOS method proposed in [18], which was derived from the COS method for option pricing
in [8].

There have been new developments in option pricing methods based on Fourier series. The
Shannon Wavelets Inverse Fourier Technique (SWIFT method) was proposed in [14] for pricing
European options and a so-called quick SWIFT variant was developed in [13] for pricing American
and barrier options. The quick SWIFT method, while also based on Shannon wavelets, has the
additional benefit of simplifying the algorithm and the error formula. Moreover, it is much easier
to adjust individual approximation values because wavelets form a localized basis. We propose a
new approach to solving BSDEs by combining a general θ-method for time-integration, as used in
[11] and [18], with the SWIFT method. We also improve on previous work on SWIFT by providing
an alternative derivation that takes into account the computational range.
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In Section 2, the class of BSDEs under our consideration along with some notations and standing
assumptions will be introduced. Section 3 contains the derivation of the SWIFT formula and our
numerical algorithm for the BSDEs, while Section 4 is related to the error and computational
complexity of our algorithm. We further improve our algorithm along the computation boundary
in Section 5. Various numerical experiments are performed in Section 6 and concluding remarks
are given in Section 7.

2 Backward stochastic differential equations

2.1 Setting

Given a filtered complete probability space (Ω,F ,F,P) with F := (Ft)0≤t≤T a filtration satisfying
the usual conditions for a fixed terminal time T > 0. The process ω := (ωt)0≤t≤T is a Brownian
motion adapted to the filtration F and we are interested in solving the following one-dimension
decoupled forward-backward stochastic differential equations, known as FBSDEs, numerically.

{

dXt = µ(t,Xt)dt+ σ(t,Xt)dωt;
dYt = −f(t,Xt, Yt, Zt)dt+ Ztdωt,

(2.1)

where 0 ≤ t ≤ T . The functions µ : Ω × [0, T ] × R → R and σ : Ω × [0, T ] × R → R refer to
the drift and the diffusion coefficients of the forward stochastic process, X, and x0 ∈ F0 is the
initial condition for X. The function f : Ω× [0, T ]×R×R×R is called the driver function of the
backward process and the terminal condition YT is given by g(XT ) for a function g : Ω × R → R.
All stochastic integrals with ω are of the Itô type.

It is assumed that both µ(t, x) and σ(t, x) are measurable functions that are uniformly Lipschitz
in x and satisfy a linear growth condition in x. Therefore, there exists a unique strong solution for
the forward stochastic differential equation,

Xt = x0 +

∫ t

0
µ(τ,Xτ )dτ +

∫ t

0
σ(τ,Xτ )dωτ .

This process also satisfies the Markov property, namely E[Xτ |Ft] = E[Xτ |Xt] for τ ≥ t, where E[·]
denotes expectation with respect to probability measure P.

A pair of adapted processes (Y,Z) is said to be the solution of the FBSDE if Y is a continuous

real-value adapted process, Z is a real-value predictable process such that
∫ T
0 |Zt|2dt < ∞ almost

surely in P and the pair satisfies Equation (2.1). We wish to find (Y0, Z0) by solving the problem
backwards in time. We do this by first discretizing Equation (2.1) along the time direction Λ : 0 =
t0 < t1 < t2 < . . . < tP = T . In this article, we assume that we have a fixed uniform time-step
∆t = tp+1 − tp, ∀p and define ∆ωp+1 := ωtp+1 − ωtp ∼ N (0,∆t), a normally distributed process.
The discretized forward process X∆ is defined by

X∆
t0 := x0, X

∆
tp+1

:= X∆
tp + µ(tp,X

∆
tp )∆t+ σ(tp,X

∆
tp )∆ωp+1, p = 0, . . . , P − 1,

which is derived from the classical Euler discretization. Note that we only defined the discretized
process at the discrete time points here. While it is possible to extend the definition to [0, T ], it is
not necessary for our presentation.
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Adopting the notation X = (X,Y,Z), we can observe from the backward equation,

Ytp = Ytp+1 +

∫ tp+1

tp

f(τ,Xτ )dτ −
∫ tp+1

tp

Zτdωτ , (2.2)

that a simple discretization is not sufficient to produce an approximation. It is because we would
require the value of Ytp+1 to approximate Ytp , but Ytp+1 is not Ftp adapted. To tackle this problem,
we follow the standard methods in literature, for example, in [4]. By taking conditional expectations
on both sides of Equation (2.2) and approximating the time integral by a θ-time discretization, as
in [18], we get

Ytp = Ep[Ytp+1 ] +

∫ tp+1

tp

Ep[f(τ,Xτ )]dτ

≈ Ep[Ytp+1 ] + ∆tθ1f(tp,Xtp) + ∆t(1− θ1)Ep[f(tp+1,Xtp+1)], θ1 ∈ [0, 1].

The notation Ep and E
x
p are defined as

Ep[·] := E[·|Xtp ] = E[·|Ftp ], and E
x
p [·] = E[·|Xtp = x].

For the process Z, we derive a recursive approximation formula by multiplying ∆ωp+1 to both sides
of Equation (2.2) and taking conditional expectations,

0 =Ep[Ytp+1∆ωp+1] +

∫ tp+1

tp

Ep[f(τ,Xτ )∆ωp+1]dτ −
∫ tp+1

tp

Ep[Zτ ]dτ

≈Ep[Ytp+1∆ωp+1] + ∆t(1− θ2)Ep[f(tp+1,Xtp+1)∆ωp+1]

−∆tθ2Ztp −∆t(1− θ2)Ep[Ztp+1 ], θ2 ∈ (0, 1].

Again, we applied the θ-method to the time integral. However, the two parameters for the θ-
method, θ1 and θ2, need not necessarily be the same. We define a discrete-time approximation
(Y ∆, Z∆) for (Y,Z):

Y ∆
tP := g(X∆

tP ), Z∆
tP = σ(tP ,X

∆
tP )Dxg(X

∆
tP ), (2.3a)

for p = P − 1, . . . , 0,

Z∆
tp := −1− θ2

θ2
Ep[Z

∆
tp+1

] +
1

θ2∆t
Ep[Y

∆
tp+1

∆ωp+1] +
1− θ2
θ2

Ep[f(tp+1,X
∆
tp+1

)∆ωp+1], (2.3b)

Y ∆
tp := Ep[Y

∆
tp+1

] + ∆tθ1f(tp,X
∆
tp) + ∆t(1− θ1)Ep[f(tp+1,X

∆
tp+1

)], (2.3c)

Again, we used the simplifying notation X∆ = (X∆, Y ∆, Z∆). Note that various combinations of
θ1 and θ2 give different approximation schemes. We have an explicit scheme for Y ∆ if θ1 = 0, and
an implicit scheme otherwise. The variable Z∆

tp depends on Ep[Z
∆
tp+1

] only if θ2 6= 1. Also, since the

terminal processes Y ∆
tP

and Z∆
tP

are deterministic with respect to X∆
tP

and X∆ is a Markov process,
one can show by induction that Y ∆

tp = y∆p (X
∆
tp ), Z

∆
tp = z∆p (X∆

tp ), where z
∆
p and y∆p are deterministic

functions related to the discretization scheme. We shall use the notation (y∆p (x), z∆p (x)) when we
wish to emphasize the dependence of our approximation.

When solving the approximation in Equation (2.3), one needs to calculate multiple conditional
expectations at each time-step. In this article, our method of choice is a wavelet-based method,
introduced in [14].
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2.2 Standing assumptions

Throughout the paper, in addition to the conditions for µ and σ, we assume the following to be
true:

(A1) The function f(t, x, y, z) is continuous with respect to (x, y, z) and all one-sided derivatives
exist.

(A2) The function g(x) is continuous in x and all left- and right-side derivatives exist.

When dealing with the discretization scheme with θ1 6= 1, we add one more assumption:

(A3) The function f is Lipschitz in (y, z), namely,

|f(t, x, y1, z1)− f(t, x, y2, z2)| ≤ M(|y1 − y2|+ |z1 − z2|); x, y1, y2, z1, z2 ∈ R, t ∈ [0, T ],

for some constant M .

Under assumptions (A1)-(A3) ((A1)-(A2) if θ1 = 1), the numerical algorithm for the FBSDE, which
will be given in Section 3, is well-defined. Although, Dxg in Equation (2.3a) may be undefined at
countable many distinctive points, it can just be replaced by a one-sided derivative at these points.
The conditions above can also ensure satisfactory performance of our algorithms in general, with
more details coming in Section 4. However, the above conditions are not sufficient to assure the
existence of the pair of adapted processes (Y,Z), which is the foundation of any numerical algorithm.
We introduce an extra assumption to ensure the existence and uniqueness of the solution (Y,Z) to
Equation (2.1).

(A4) There exists a constant M such that

|f(t, x, y, z)| + |g(x)| ≤ M(1 + |x|ν + |y|+ |z|), ∀x, y, z ∈ R, t ∈ [0, T ], ν ≥ 1

2
.

For further results on the existence and uniqueness of the solution of BSDEs, readers are referred
to [16] and further research extending this result. The last point we would like to raise is that the
convergent rate of the discretized process to the original process also depends on the functions µ,
σ, f and g. We shall discuss these requirements in Section 4.1; these conditions are not included
in the standing assumptions.

3 SWIFT method

For the computation of the expectations appearing in the discrete FBSDEs (2.3), we will use
the wavelet-based SWIFT method. In this section, we first provide an alternative derivation for
the SWIFT formula used in [14] and [13]. Instead of using an approximation space based on
Shannon wavelets on the whole real line, we construct a Shannon wavelet scaling function on a
finite domain and derive our formula with this scaling function. This approach is beneficial since
a truncation of the integration range is required when calculating the wavelet coefficients for the
SWIFT formula. Incorporating the truncated range in the scaling function simplifies the formula
for the approximation error. Next, we apply the SWIFT method to compute the conditional
expectations in the discrete-time approximation of the FBSDE in Equation (2.3) and produce an
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algorithm for solving FBSDEs recursively, backwards in time. In Sections 3.1 and 3.2, we derive
the SWIFT formula with the finite range approach and compute the relevant expectations for the
FBSDE algorithm. Section 3.3 and 3.4 discuss the approximations of the functions z∆p (x) and

y∆p (x).

3.1 Scaling Functions

We begin our discussion with some preliminary definitions and results. For any fixed real number
m and integer J 6= 0, we define an inner product and a norm:

< v,w >:=
2m

J

∫ 2−mJ

−2−mJ
v(x)w(x)dx, ||v||2 :=

√
< v, v >.

A function v is said to be in the L2((−2−mJ, 2−mJ ]) space if ||v||2 is a finite number. It can be
shown that the set

Γm,J :=

{

cos

((

2n− 1

2J
π

)

2mx

)

, sin

((

2n− 1

2J
π

)

2mx

)
∣

∣

∣

∣

n = 1, 2, . . .

}

,

is orthonormal with respect to this inner product and is dense in L2((−2−mJ, 2−mJ ]).
Equipped with the above definitions, we construct an approximation space together with a

localized basis, which are the foundations of the truncated SWIFT approximation method. Consider
2J distinctive functions ϕJ,r : R → R,

ϕJ,r(x) :=

J
∑

k=1

(

cos

((

2k − 1

2J
π

)

2mx

)

cos

((

2k − 1

2J
π

)

2m
( r

2m

)

)

+sin

((

2k − 1

2J
π

)

2mx

)

sin

((

2k − 1

2J
π

)

2m
( r

2m

)

))

=
J
∑

k=1

cos

(

2k − 1

2J
π (2mx− r)

)

(3.1)

=











J if x = 2J
2m l + r

2m for l an even integer,

−J if x = 2J
2m l + r

2m for l an odd integer,
sin(π(2mx−r))

2 sin( π
2J

(2mx−r))
otherwise,

where r = 1 − J, 2 − J, . . . , J . This definition is a special case of the scaling functions given in
Equation (2.13) of [9], in which the authors presented a uniform approach for the construction of
wavelets based on orthogonal polynomials. The properties of ϕJ,r have been extensively studied in
[9] and those that are relevant to our numerical method are listed in the next theorem along with
their proof.

Theorem 3.1. The scaling function ϕJ,r, which is defined in Equation (3.1), satisfies the following
properties:

(a) The inner product between two scaling functions is given by the following equation:

< ϕJ,r, ϕJ,s >= ϕJ,r

( s

2m

)

, r, s = 1− J, 2− J, . . . , J.

Thus, {ϕJ,r|r = 1− J, 2− J, . . . , J} form an orthogonal set.
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(b) The scaling function ϕJ,r is localized around r
2m . By this we mean that for the subspace

VJ := span

{

cos

(

(2k − 1)π

2J
2mx

)

, sin

(

(2k − 1)π

2J
2mx

)∣

∣

∣

∣

k = 1, 2, . . . , J

}

,

we have
∣

∣

∣

∣

∣

∣

∣

∣

ϕJ,r

ϕJ,r(2−mr)

∣

∣

∣

∣

∣

∣

∣

∣

2

= min
{

||χ||2 : χ ∈ VJ , χ
( r

2m

)

= 1
}

.

(c) {ϕJ,r|r = 1− J, 2− J, . . . , J} is a basis for VJ .

(d) The scaling function ϕJ,r is also a kernel polynomial in the sense that for any function v in
Vj , we have

< v,ϕJ,r >= v
( r

2m

)

.

Proof. We can demonstrate (a) by direct computation and applying the orthonormality of the set
Γm,J , such that

< ϕJ,r, ϕJ,s >=

n
∑

k=1

(

cos

((

2k − 1

2J
π

)

2m
( r

2m

)

)

cos

((

2k − 1

2J
π

)

2m
( s

2m

)

)

+ sin

((

2k − 1

2J
π

)

2m
( r

2m

)

)

sin

((

2k − 1

2J
π

)

2m
( s

2m

)

))

=ϕJ,r

( s

2m

)

=







J, if s = r,
sin((s−r)π)

2 sin
(

(s−r)π
2J

) = 0, otherwise.

Next, let

χ(x) =
J
∑

k=1

(

ck cos

(

(2k − 1)π

2J
2mx

)

+ dk sin

(

(2k − 1)π

2J
2mx

))

,

and χ
(

r
2m

)

= 1 for some constants ck and dk. By a simple application of the Cauchy-Schwarz
inequality, we get

1 = χ2
( r

2m

)

=

(

J
∑

k=1

(

ck cos

(

(2k − 1)π

2J
r

)

+ dk sin

(

(2k − 1)π

2J
r

))

)2

≤
(

J
∑

k=1

(c2k + d2k)

)(

J
∑

k=1

(

(

cos

(

(2k − 1)π

2J
r

))2

+

(

sin

(

(2k − 1)π

2J
r

))2
))

= J ||χ||22.

The last equality follows from the orthonormality of set Γm,J and since ck and dk are arbitrary,
||χ||22 ≥ 1

J for any χ ∈ VJ , such that χ
(

r
2m

)

= 1. On the other hand, as

ϕJ,r

( r

2m

)

=
J
∑

k=1

(

(

cos

(

(2k − 1)π

2J
2m

r

2m

))2

+

(

sin

(

(2k − 1)π

2J
2m

r

2m

))2
)

= J,
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We know that
∣

∣

∣

∣

∣

∣

∣

∣

ϕJ,r

ϕJ,r(2−mr)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
< ϕJ,r, ϕJ,r >

J2
=

1

J
,

which concludes the proof of (b). Statement (c) is true since {ϕJ,r|r = 1 − J, 2 − J, . . . , J} has
the same number of elements as the spanning set of VJ ; its elements are orthogonal and therefore
independent of each other.

Part (d) follows from parts (a) and (c). For any v ∈ VJ , v(·) =
∑J

s=1−J VsϕJ,s(·) by (c), and
from part (a), we have

< v,ϕJ,r >=

J
∑

s=1−J

Vs < ϕJ,s, ϕJ,r >=

J
∑

s=1−J

VsϕJ,s

( r

2m

)

= v
( r

2m

)

.

The space VJ and the scaling functions {ϕJ,r}r=1−J,...,J are our approximation space and our
basis functions, respectively. As a result, for any function v in the L2((−2−mJ, 2−mJ ]) space, its
projection on VJ , denoted as HVJ

v, can be written in the form 1
J

∑J
r=1−J < HVJ

v, ϕJ,r > ϕJ,r =
1
J

∑J
r=1−J < v,ϕJ,r > ϕJ,r.

3.2 Quick SWIFT formula and coefficients

Assume we wish to approximate a finite integral
∫

R
v(ς)q(ς)dς, where v is within L2((−2−mJ, 2−mJ ])

and we have
∫

R
q(ς)dς < ∞. We shall approach this problem by replacing v by HVJ

v. This gives
us the following approximation:

∫

R

v(ς)q(ς)dς ≈
∫

R

q(ς)
1

J

J
∑

r=1−J

< v,ϕJ,r > ϕJ,r(ς)dς

=

∫

R

q(ς)
1

J

J
∑

r=1−J

2m

J

∫ 2−mJ

−2−mJ
v(̺)

J
∑

k1=1

cos (Ck1(2
m̺− r)) d̺

J
∑

k2=1

cos (Ck2(2
mς − r)) dς

=
J
∑

r=1−J

∫

R

q(ς)
2

m
2

J

J
∑

k2=1

cos (Ck2(2
mς − r)) dς

∫ 2−mJ

−2−mJ
v(̺)

2
m
2

J

J
∑

k!=1

cos (Ck2(2
m̺− r)) d̺,

which is the SWIFT formula, proposed in [14], with Ck := 2k−1
2J π. In the above derivation, we

only listed the dependency to dummy variable ς of the functions v and q. In practice, v and q
will depend on other variables, like for example, time. We will put the additional dependency in
our notation without further notice in the remainder of this article whenever it is necessary for the
presentation.

Remark 3.2. While the accuracy of the approximation depends on other properties of the functions
v and q and shall be studied in the rest of this article, v ∈ L2((−2−mJ, 2−mJ ]) and q being integrable
are the only conditions needed for the above approximation to be well-defined.

Remark 3.3. We only define the approximation on the set (−2−mJ, 2−mJ ] that centers around zero.

For any function v such that
∫ b
a (v(ς))

2dς < ∞ for a finite range (a, b], we need to perform a change

of variables ς ′ = ς − a+b
2 , for ς ′ ∈ (a− a+b

2 , b − a+b
2 ], let v′(ς ′) = v(ς ′ + a+b

2 ) = v(ς). Then, we can
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pick J and m accordingly and perform the approximation on v′. With a slight abuse of notation,
we assume that we perform this tedious step implicitly and apply the SWIFT formula with any
finite range [a, b].

In this article, we shall adopt the quick variant of the SWIFT formula proposed in [13]. Instead
of replacing v with HVJ

v, we approximate v by

v(x) ≈ 1

J

J
∑

r=1−J

v
( r

2m

)

ϕJ,r(x).

The reason behind this is left for the error section, but this gives an approximation for Ex
p[v(tp+1,X

∆
tp+1

)],
which we see in the discrete-time approximation of FBSDE,

E
x
p[v(tp+1,X

∆
tp+1

)] ≈E
x
p

[

1

J

J
∑

r=1−J

v
(

tp+1,
r

2m

)

ϕJ,r(X
∆
tp+1

)

]

=
1

J

J
∑

r=1−J

v
(

tp+1,
r

2m

)

E
x
p [ϕJ,r(X

∆
tp+1

)].

The expectation E
x
p[ϕJ,r(X

∆
tp+1

)] can be computed by

E
x
p[ϕJ,r(X

∆
tp+1

)] = E
x
p

[

J
∑

k=1

cos
(

2mCkX
∆
tp+1

− Ckr
)

]

= ℜ
{

J
∑

k=1

E
x
p [exp (ı2

mCk(x+ µ(tp, x)∆t+ σ(tp, x)∆ωp+1)) exp (−ıCkr)]

}

= ℜ
{

J
∑

k=1

exp (ı2mCkx)Φ (tp, x, 2
mCk) exp (−ıCkr)

}

, (3.2)

where the real part of a complex number is denoted by ℜ{} and Φ is the characteristic function of
X∆

tp+1
−X∆

tp , i.e.

Φ(τ, ς, ̺) := exp

(

ı̺µ(τ, ς)∆t − 1

2
̺2σ2(τ, ς)∆t

)

.

The authors of [13] demonstrated how to calculate the vector (Ex
p [ϕJ,r(X

∆
tp+1

)])r=(1−J,...,J) with a
Fast Fourier Transform (FFT) algorithm. The computations induced by Equation (3.2) in our
algorithm have the computation complexity of O(J log(J)).

Expectations in the form E
x
p [v(X

∆
tp+1

)∆ωp+1] also occur in the discrete-time approximation of
the FBSDE and they can be computed by:

E
x
p [v(tp+1,X

∆
tp+1

)∆ωp+1] ≈E
x
p

[

1

J

J
∑

r=1−J

v
(

tp+1,
r

2m

)

ϕJ,r(X
∆
tp+1

)∆ωp+1

]

=
1

J

J
∑

r=1−J

v
(

tp+1,
r

2m

)

E
x
p[ϕJ,r(X

∆
tp+1

)∆ωp+1],
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with E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1] given by the formula:

E
x
p[ϕJ,r(X

∆
tp+1

)∆ωp+1] = σ(tp, x)∆tEx
p [DxϕJ,r(X

∆
tp+1

)]

=ℜ
{

ıσ(tp, x)∆t

J
∑

k=1

2mCkE
x
p [exp (ı2

mCk(x+ µ(tp, x)∆t+ σ(tp, x)∆ωp+1)) exp (−ıCkr)]

}

=ℜ
{

ıσ(tp, x)∆t
J
∑

k=1

2mCk exp (ı2
mCkx) Φ (tp, x, 2

mCk) exp (−ıCkr)

}

, (3.3)

where the first equality sign follows from an integration by parts argument and we also note that
DxϕJ,r(x) = −∑J

k=1 2
mCk sin (2

mCkx− Ckr) . Once again, we can use the FFT to compute these
expectations.

In the next two sections, we will combine the quick variant of the SWIFT formula and the
discrete-time approximation of the FBSDE in Equation (2.3).

3.3 Quick SWIFT approximation of function z
∆
p (x)

There are three different expectations, E
x
p [Z

∆
tp+1

], Ex
p [Y

∆
p+1∆ωtp+1 ], and E

x
p[f(tp+1,X

∆
tp+1

)∆ωp+1],
that need to be approximated in Equation (2.3b). Applying the quick SWIFT formula, we have:

E
x
p [Z

∆
tp+1

] ≈ 1

J

J
∑

r=1−J

z∆p+1

( r

2m

)

ℜ
{

J
∑

k=1

eı2
mCkxΦ (tp, x, 2

mCk) e
−ıCkr

}

;

E
x
p [Y

∆
tp+1

∆ωp+1] ≈
1

J

J
∑

r=1−J

y∆p+1

( r

2m

)

ℜ
{

ıσ(tp, x)∆t

J
∑

k=1

2mCke
ı2mCkxΦ (tp, x, 2

mCk) e
−ıCkr

}

;

E
x
p[f(tp+1,X

∆
tp+1

)∆ωp+1] ≈
1

J

J
∑

r=1−J

f
(

tp+1,
r

2m
, y∆p+1

( r

2m

)

, z∆p+1

( r

2m

))

·

ℜ
{

ıσ(tp, x)∆t

J
∑

k=1

2mCke
ı2mCkxΦ (tp, x, 2

mCk) e
−ıCkr

}

.

We denote the approximation of the FBSDE by a SWIFT-type formula combining with the
Euler discretization at point (tp, x) by (ŷ∆p (x), ẑ∆p (x)), then ẑ∆p satisfies the following recursive
relation:

ẑ∆p (x) = ℜ
{

1

J

J
∑

k=1

eı2
mCkx

[

Φ (tp, x, 2
mCk)

J
∑

r=1−J

(

−1− θ2
θ2

ẑ∆p+1

( r

2m

)

e−ıCkr

)

]}

+ℜ
{

ı

J
σ(tp, x)

J
∑

k=1

eı2
mCkx2mCkΦ (tp, x, 2

mCk) ·
[

J
∑

r=1−J

(

1

θ2
ŷ∆p+1

( r

2m

)

+
(1− θ2)∆t

θ2
f
(

tp+1,
r

2m
, ŷ∆p+1

( r

2m

)

, ẑ∆p+1

( r

2m

))

e−ıCkr

)

]}

,

(3.4)

for p = 0, 1, . . . , P − 1.
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3.4 Quick SWIFT approximation of function y
∆
p (x)

Equation (2.3c) for Y ∆
tp contains an explicit and an implicit part if θ1 > 0. The explicit part is

denoted by:
h(tp, x) := E

x
p [Y

∆
tp+1

] + ∆t(1− θ1)E
x
p[f(tp+1,X

∆
tp+1

)]. (3.5)

The function h is a linear combination of two expectations, Ex
p [Y

∆
tp+1

] and E
x
p[f(tp+1,X

∆
tp+1

)], and
they can be approximated by the following quick SWIFT formulas:

E
x
p [Y

∆
tp+1

] ≈ 1

J

J
∑

r=1−J

y∆p+1

( r

2m

)

ℜ
{

J
∑

k=1

eı2
mCkxΦ (tp, x, 2

mCk) e
−ıCkr

}

; (3.6a)

E
x
p[f(tp+1,X

∆
tp+1

)] ≈ 1

J

J
∑

r=1−J

f
(

tp+1,
r

2m
, y∆p+1

( r

2m

)

, z∆p+1

( r

2m

))

ℜ
{

J
∑

k=1

eı2
mCkxΦ (tp, x, 2

mCk) e
−ıCkr

}

.

(3.6b)

Therefore, we have an approximation for h:

ĥ(tp, x) :=E
x
p [ŷ

∆
p+1(X

∆
tp+1

)] + ∆t(1− θ1)E
x
p [f(tp+1,X

∆
tp+1

, ŷ∆p+1(X
∆
tp+1

), ẑ∆p+1(X
∆
tp+1

))]

=ℜ
{

1

J

J
∑

k=1

eı2
mCkxΦ (tp, x, 2

mCk) ·

J
∑

r=1−J

[

ŷ∆p+1

( r

2m

)

+∆t(1− θ1)f
(

tp+1,
r

2m
, ŷ∆p+1

( r

2m

)

, ẑ∆p+1

( r

2m

))]

e−ıCkr

}

,

(3.7)

and the function ŷ∆p is defined implicitly by:

ŷ∆p (x) = ∆tθ1f(tp, x, ŷ
∆
p (x), ẑ∆p (x)) + ĥ(tp, x). (3.8)

Whenever θ1 6= 0, Picard iterations are performed I times to recover ŷ∆p (x), which is the
same procedure used in both [10] and [18]. The initial guess for the iterations is defined as the
approximation of Ex

p[Y
∆
tp+1

] as in Equation (3.6a). The conditions for convergent iterations and an
extra error induced will be discussed in Section 4.3.

The overall algorithm to generate an approximation (ŷ∆0 (x), ẑ∆0 (x)) for (Y0, Z0) has been sum-
marized in Algorithm 1.

4 Errors and computational complexity

In this section, we shall discuss the major components of the error when solving an FBSDE with a
SWIFT-type method. They are the discretization error of the FBSDE, the error of approximation
with the SWIFT formula and the error introduced by the Picard iteration. We will also discuss
the computational complexity of the SWIFT method. For notational simplicity, we shall use M to
denote a generic constant whose value and dependency may change from line to line.
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begin

for s = 1− J to J do

ŷ∆P (2
−ms) = g(2−ms), ẑ∆P (2−ms) = σDxg(2

−ms) and

f̂∆
P (2−ms) = f(T, 2−ms, ŷ∆P (2−ms), ẑ∆P (2−ms)).

end

Compute (E2−mr
P−1 [ϕJ,k(X

∆
tP
)])r,k=1−J,...,J and (E2−mr

P−1 [ϕJ,k(X
∆
tP
)∆ωP ])r,k=1−J,...,J with (3.2)

and (3.3).
for p = P − 1 to 1 do

Compute the function (ẑ∆p (2−ms))s=1−J,...,J with (3.4).

Compute the function (ŷ∆p (2−ms))s=1−J,...,J with (3.8) and Picard iterations if
necessary.
Compute the functions (f(tp, 2

−ms, ŷ∆p (2−ms), ẑ∆p (2−ms)))s=1−J,...,J .

Compute (E2−mr
p−1 [ϕJ,k(X

∆
tp )])r,k=1−J,...,J and (E2−mr

p−1 [ϕJ,k(X
∆
tp )∆ωp])r,k=1−J,...,J with

(3.2) and (3.3) if the distribution of (X∆
tp −X∆

tp−1
) is time-dependent.

end

Compute ẑ∆0 (x0) and ŷ∆0 (x0).
end

Algorithm 1: Quick SWIFT method.

4.1 Discretization error of the FBSDE

The error due to the discrete-time approximation of the stochastic process depends on the param-
eters θ1 and θ2, the drift µ, the volatility σ, the driver function f and the terminal condition g.
It is difficult to provide a universal result for all FBSDEs for which our method can be applied.
However, under some specific assumptions, we can derive an error bound for the global error due
to time discretization. Adopting the following error notation:

εyp(Xp) :=yp(Xtp)− y∆p (X∆
tp ), ε

z
p := zp(Xtp)− z∆p (X∆

tp ), ε
f
p(Xtp) := f(tp,Xtp)− f(tp,X

∆
tp),

one of the results for the discretization error is in the following theorem.

Theorem 4.1 ([18],Theorem 1.). Assume that the forward process has constant coefficients µ and
σ and the discretization scheme with θ1 = θ2 =

1
2 . If

E
x
P−1[|εzP |] ∼ O((∆t)3), Ex

P−1[|εyP |] ∼ O((∆t)3),

then
E
x
0

[

|εyp|+
√
∆t|εzp|

]

≤ M(∆t)2, for 1 ≤ p ≤ P,

where the constant M depends on numbers T , µ and σ and functions g and f .

For general drift and diffusion coefficients, we may only have first-order weak convergence for the
Euler discretization of forward process X and it may become the dominating error of our algorithm.
For the proof of Theorem 4.1 and other convergence results, readers are referred to [18] and the
references therein.

11



4.2 Error in SWIFT formulas

In this subsection, we shall discuss the error of the numerical approximation by the SWIFT-type
formulas. In order for our formula to be applicable for both the one-step approximation and the
recursive case, we adopt the following setting.

Consider an expectation E[v(X∆
t+∆t)|X∆

t = x] for a function v defined on R and assume that
v is continuous with all its left- and right-side derivatives well-defined, we define our expectation
approximation as

Ê[v(X∆
t+∆t)|X∆

t = x] :=
1

J

J
∑

r=1−J

ρv

( r

2m

)

E[ϕJ,r(X
∆
t+∆t)|X∆

t = x], (4.1)

where {ρv(2−mr)}r=1−J,...,J is an approximation vector related to function v, to be defined. For any
function v : R → R and given range (−2−mJ, 2−mJ ], we associate v with an alternating extension
defined below.

Definition 4.2. An alternating extension of a function v, denoted by ṽ, is a function defined on
R such that it satisfies:

(a) ṽ(x) = v(x) ∀x ∈ (−2−mJ, 2−mJ ];

(b) ṽ(x+ 21−mJ) = −ṽ(x) ∀x ∈ R.

The difference between the approximation value and the true value is given by

E[v(X∆
t+∆t)|X∆

t = x]− Ê[v(X∆
t+∆t)|X∆

t = x]

=E[v(X∆
t+∆t)|X∆

t = x]− E[ṽ(X∆
t+∆t)|X∆

t = x] + E[ṽ(X∆
t+∆t)|X∆

t = x]− E[HVJ
v(X∆

t+∆t)|X∆
t = x]

+E

[

1

J

J
∑

r=1−J

< HVJ
v, ϕJ,r > ϕJ,r(X

∆
t+∆t)

∣

∣

∣

∣

∣

X∆
t = x

]

− 1

J

J
∑

r=1−J

ρv

( r

2m

)

E[ϕJ,r(X
∆
t+∆t)|X∆

t = x]

=E[v(X∆
t+∆t)1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]− E[ṽ(X∆
t+∆t)1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]

+E[ṽ(X∆
t+∆t)−HVJ

v(X∆
t+∆t)|X∆

t = x] +
1

J

J
∑

r=1−J

(

HVJ
v
( r

2m

)

− ρv

( r

2m

))

E[ϕJ,r(X
∆
t+∆t)|X∆

t = x]

(4.2)

=E[v(X∆
t+∆t)1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]− E[ṽ(X∆
t+∆t)1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]

+E[ṽ(X∆
t+∆t)−HVJ

v(X∆
t+∆t)|X∆

t = x] +
1

J

J
∑

r=1−J

(

HVJ
v
( r

2m

)

− v
( r

2m

))

E[ϕJ,r(X
∆
t+∆t)|X∆

t = x]

+
1

J

J
∑

r=1−J

(

v
( r

2m

)

− ρv

( r

2m

))

E[ϕJ,r(X
∆
t+∆t)|X∆

t = x]. (4.3)

We derive the above formula by telescoping and using the properties of the scaling function. By
taking absolute values on both sides of Equation (4.3), we get a simple bound for the approximation
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error:
∣

∣

∣
E[v(X∆

t+∆t)|X∆
t = x]− Ê[v(X∆

t+∆t)|X∆
t = x]

∣

∣

∣

≤ |E[v(X∆
t+∆t)1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]|+ E[|ṽ(X∆
t+∆t)|1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]

+E[|ṽ(X∆
t+∆t)−HVJ

v(X∆
t+∆t)| |X∆

t = x] +
1

J

J
∑

r=1−J

∣

∣

∣
HVJ

v
( r

2m

)

− ṽ
( r

2m

)
∣

∣

∣
|E[ϕJ,r(X

∆
t+∆t)|X∆

t = x]|

+
1

J

J
∑

r=1−J

∣

∣

∣
v
( r

2m

)

− ρv

( r

2m

)
∣

∣

∣
|E[ϕJ,r(X

∆
t+∆t)|X∆

t = x]|.

Errors of a SWIFT-type method can be separated into four (in Equation (4.2)) or five (in
Equation (4.3)) parts and they will be discussed one by one. Note that the first three terms in
Equation (4.2) and (4.3) are the same.

The first error term is related to the tail behaviour of the probability measure and function
v. It is finite, as otherwise the original expectation would be infinite. Also, its value should
decrease (heuristically speaking, not in strict mathematical sense) when a wider computational
domain is used. Assuming v to be uniformly bounded by a number M , this term is bounded by
M ·P(X∆

t+∆t /∈ (−2−mJ, 2−mJ ]|X∆
t = x). Similarly, the second term is related to the tail probability.

Because of the continuity of v and the periodicity of ṽ, ṽ is uniformly bounded by some number
M ′ and the second error term is bounded by M ′ · P(X∆

t+∆t /∈ (−2−mJ, 2−mJ ]|X∆
t = x).

The third part is related to the projection error on VJ . From the assumption that v is continuous
with all left- and right-side derivatives of v existing, ṽ = limJ→∞HVJ

v, a.e.. This can be shown by
adopting the classical Dirichlet’s kernel argument. Applying the dominated convergence theorem,

E[ṽ(X∆
t+∆t)−HVJ

v(X∆
t+∆t) |X∆

t = x] =

∞
∑

k=J+1

< v, cos(2mCj·) > E[cos(2mCjX
∆
t+∆t)|X∆

t = x]

+
∞
∑

k=J+1

< v, sin(2mCj·) > E[sin(2mCjX
∆
t+∆t)|X∆

t = x].

Note that in this part, we only require ṽ = limJ→∞HVJ
v, a.e., so that we can relax the requirement

on v from being continuous to being piecewise continuous. Using an integration by parts argument,
if the forward process has a smooth density, this error converges exponentially with respect to J
but increases with the computational range.

Remark 4.3. In fact, the projection error in the SWIFT formula can be controlled under alternative
conditions. Assume that the probability density function q of X∆

t+∆t|X∆
t = x, is in L2(R), then,

|E[ṽ(X∆
t+∆t)−HVJ

v(X∆
t+∆t)|X∆

t = x]− E[ṽ(X∆
t+∆t)1{X∆

t+∆t
/∈(−2−mJ,2−mJ ]}|X∆

t = x]|
=|E[ṽ(X∆

t+∆t)−HVJ
v(X∆

t+∆t)1{X∆
t+∆t

∈(−2−mJ,2−mJ ]}|X∆
t = x]

−E[HVJ
v(X∆

t+∆t)1{X∆
t+∆t

/∈(−2−mJ,2−mJ ]}|X∆
t = x]|

≤||ṽ −HVJ
v||2

(
∫

R

q2(ς|x)dς
)

1
2

+M3P(X
∆
t+∆t /∈ (−2−mJ, 2−mJ ]|X∆

t = x),
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with M3 depending on the function HVJ
v. While we do not use this alternative proof in this article,

it implies that the SWIFT formula can be used in a more general setting and is suitable for other
applications as well.

In the usual variant of the SWIFT formula, we set ρv(2
−mr) =< v,ϕJ,r >, so the fourth term

of Equation (4.2) is by definition zero and the error of applying the SWIFT formula will only
consist of the first three terms. However, the calculation of < v,ϕJ,r > is difficult and time-
consuming, if not impossible in practice, especially in the recursive case. Therefore, we propose
picking ρv(2

−mr) = v̂(2−mr), an approximation of the original function v. While it will introduce
an extra error, we shall demonstrate that this error can be controlled and that the computation is
much simpler.

For the sum in the fourth term of Equation (4.3), we need to consider two cases. When r 6= J ,
the pointwise convergence of HVJ

v guarantees that
∣

∣HVJ
v
(

r
2m

)

− ṽ
(

r
2m

)
∣

∣ → 0. Therefore, these
terms are bounded when J is large enough. When r = J , it is likely that ṽ is discontinuous at 2−mJ
and the above argument does not hold. However, we note that this error term is also a weighted
sum of HVJ

v(2−mr) − v(2−mr), with the weight given by 1
JE[ϕJ,r(X

∆
t+∆t)|X∆

t = x]. Assume that
P(X∆

t+∆t 6∈ (λ−b, λ+b)) < ǫ1 and
1
JϕJ,J(x) < ǫ2, when x ∈ (λ−b, λ+b), for some positive numbers

b, ǫ1 and ǫ2 and some number λ, then

1

J
E[ϕJ,r(X

∆
t+∆t)|X∆

t = x] <P(X∆
t+∆t 6∈ (λ− b, λ+ b)) + ǫ2P(X

∆
t+∆t ∈ (λ− b, λ+ b)) < ǫ1 + ǫ2.

These assumptions are satisfied when the distribution of X∆ is centered around a point λ, which
is true with a diffusion process whose diffusion coefficient is small, the computational range is
sufficiently large so that λ is far away from the boundary, and the wavelet order is sufficiently high.
If these conditions are met, the weight for the term

∣

∣HVJ
v
(

J
2m

)

− ṽ
(

J
2m

)
∣

∣ is small and the weighted
term can be bounded. By combining the two arguments above, we can bound this error term when
the computational range is sufficiently large and the wavelet order is sufficiently high.

In the one-step case, we pick ρv = v. Equation (4.2) along with the above analysis covers all
approximation errors.

In the backward recursive case, we can use Equation (4.3) to study the error propagation at
each time step. For example, in our BSDE algorithm, we let v = y∆p+1 or z∆p+1 and ρv = ŷ∆p+1 or

ẑ∆p+1. In these cases, the fifth term of Equation (4.3) is comparing our approximation with the
true value at the next time step. The error accumulates in a recursive way by applying this error
analysis from time step t0 to tp−1. Further discussion of the error propagation will be given in
Section 4.4.

The error for approximating E[v(X∆
t+∆t)∆ωp+1|X∆

t = x] with

Ê[v(X∆
t+∆t)(ωt+∆t − ωt)|X∆

t = x] :=
1

J

J
∑

r=1−J

ρv

( r

2m

)

E[ϕJ,r(X
∆
t+∆t)(ωt+∆ − ωt)|X∆

t = x], (4.4)

can be studied in a similar way.

Remark 4.4. It is clear from the derivation that the assumption of the function v being continuous
with left- and right-side derivatives is crucial in applying the quick version of the SWIFT formula.
In our FBSDE algorithm, the functions y and z at intermediate time points, p = 1, . . . , P − 1,
satisfy the above conditions. This can be observed from Equations (3.4) and (3.8). However, we
may still face an issue at the terminal time, as Dxg may contain discontinuities. We propose a mixed

14



algorithm to deal with this situation. At the terminal time, the usual SWIFT formulas are used
and then the algorithm switches to the quick version in all subsequent time steps, see Algorithm 2.

begin

for s = 1− J to J do

ŷ∆P (2
−ms) =< g,ϕJ,s >, ẑ∆P (2−ms) =< σDxg, ϕJ,s > and

f̂∆
P (2−ms) =< f(T, ·, g(·), σDx(·)), ϕJ,r > .

end

Compute (E2−mr
P−1 [ϕJ,k(X

∆
tP )])r,k=1−J,...,J and (E2−mr

P−1 [ϕJ,k(X
∆
tP )∆ωP ])r,k=1−J,...,J with (3.2)

and (3.3).
for p = P − 1 to 1 do

Compute the function (ẑ∆p (2−ms))s=1−J,...,J with (3.4).

Compute the function (ŷ∆p (2−ms))s=1−J,...,J with (3.8) and Picard iterations if
necessary.
Compute the functions (f(tp, 2

−ms, ŷ∆p (2−ms), ẑ∆p (2−ms)))s=1−J,...,J .

Compute (E2−mr
p−1 [ϕJ,k(X

∆
tp )])r,k=1−J,...,J and (E2−mr

p−1 [ϕJ,k(X
∆
tp )∆ωp])r,k=1−J,...,J with

(3.2) and (3.3) if the distribution of (X∆
tp −X∆

tp−1
) is time-dependent.

end

Compute ẑ∆0 (x0) and ŷ∆0 (x0).
end

Algorithm 2: Mixed quick SWIFT method.

4.3 Picard iteration error

When θ1 6= 0, a Picard iteration must be performed with the equation:

y = ∆tθ1f(tp, x, y, ẑ
∆
p (x)) + ĥ(tp, x),

to find the fixed point y. It is well-known that this iterative algorithm will converge to the unique
fixed point if the function ∆tθ1f is a contraction map of y, namely,

|∆tθ1f(tp, x, y1, ẑ
∆
p (x)) −∆tθ1f(tp, x, y2, ẑ

∆
p (x))| ≤ ξ|y1 − y2|,

with ξ ∈ [0, 1) for all x ∈ (−2−mJ, 2−mJ ]. This condition is satisfied when the driver function is
Lipschitz in y and ∆t is small enough.

We adopt the following notation:























ŷ∆,I
P (x) := g(x);

ŷ∆,0
p (x) :=

1

J

J
∑

r=1−J

ŷ∆,I
p+1

( r

2m

)

ℜ
{

J
∑

k=1

eı2
mCkxΦ(tp, x, 2

mCk)e
−ıCkr

}

;

ŷ∆,i+1
p (x) := ∆tθ1f(tp, x, ŷ

∆,i
p (x), ẑ∆p (x)) + ĥ(tp, x),

for p = 0, . . . , P − 1 and i = 0, . . . , I − 1. It is clear that ŷ∆,I
p (x) = ĥ(tp, x) when θ1 = 0 and I ≥ 1,

which is the explicit scheme. The above notations are consistent with the notations in Section 3.4
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except we should replace the ŷ∆p+1 with ŷ∆,I
p+1 in equation (3.5). Furthermore, for any given x, we

know by definition that y∆p (x) is the unique fixed point that satisfies

y = ∆tθ1f(tp, x, y, z
∆
p (x)) + h(tp, x).

Note that the notation ŷ∆p was defined by Equation (3.8).
With the above notations and given the extra information that f is Lipschitz with respect to

z, we can derive the one-step approximation error for function y∆:

|ŷ∆,I
p (x)− y∆p (x)| ≤ |ŷ∆,I

p (x)− ŷ∆p (x)|+ |ŷ∆p (x)− y∆p (x)|
≤εPicard

p +∆tθ1|f(tp, x, ŷ∆p (x), ẑ∆p (x))− f(tp, x, y
∆
p (x), z∆p (x))| + |ĥ(tp, x)− h(tp, x)|

≤εPicard
p + ξ|ŷ∆p (x)− y∆p (x)|+ ξ|ẑ∆p (x)− z∆p (x)|+ |ĥ(tp, x)− h(tp, x)|

≤(1 + ξ)εPicard
p + ξ|ŷ∆,I

p (x)− y∆p (x)|+ ξ|ẑ∆p (x)− z∆p (x)|+ |ĥ(tp, x)− h(tp, x)|.

The term εPicard
p := |ŷ∆,I

p (x)− ŷ∆p (x)| is the error of applying Picard iterations, which depends on
∆t and the Lipschitz coefficient of f with respect to y, as stated before in this section. The constant
M is related to the Lipschitz coefficient of f from standing assumption (A3) and ξ := M∆tθ1 ≤ 1.
The last inequality is due to a telescoping argument of the term |ŷ∆p (x)− y∆p (x)|. Rearranging the
terms gives us the following error bound:

|ŷ∆,I
p (x)− y∆p (x)| ≤

1 + ξ

1− ξ
εPicard
p +

1

1− ξ
(ξ|ẑ∆p (x)− z∆p (x)|+ |ĥ(tp, x)− h(tp, x)|). (4.5)

4.4 The errors of the FBSDE recursive scheme

Given an FBSDE system, a time partition and a discretization scheme, we may apply the result in
Section 4.2 to derive a local approximation error for the related expectations. When we are approx-
imating expectations with the functions y∆p+1 and z∆p+1 in the BSDE scheme, the approximation
vector is given by

{

ρy∆p+1
= {ŷ∆,I

p+1(2
−mr)}r=1−J,...,J ;

ρz∆p+1
= {ẑ∆p+1(2

−mr)}r=1−J,...,J ,

for p = 0, . . . , P − 2. At the terminal time tP = T , they are defined as

{

ρy∆
P
= {Y ∆

T |X∆
T = 2−mr}r=1−J,...,J ;

ρz∆
P
= {Z∆

T |X∆
T = 2−mr}r=1−J,...,J ,

or
{

ρy∆
P
= {< Y ∆

T , ϕJ,r >}r=1−J,...,J ;

ρz∆
P
= {< Z∆

T , ϕJ,r >}r=1−J,...,J ,

depending on the scheme we used. When approximating expectations involving f(tp+1, x, y
∆
p+1(x), z

∆
p+1(x)),

the approximation vector ρfp+1 = {f(tp+1, 2
−mr, ρy∆p+1

(2−mr), ρz∆p+1
(2−mr)}r=1−J,...,J , for p = 0, . . . P−

1.
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From Equation (4.3), we know that the approximation error for the SWIFT formula consists of
four parts. Therefore, the local approximation errors at point (t, x) by the SWIFT formula for any
function v, denoted as ζm,J

v (tp, x) or ζ
m,J,ω
v (tp, x) for the two types of expectation, are given by

ζm,J
v (tp, x) :=E

x
p [v(X

∆
tp+1

)1{X∆
tp+1

/∈(−2−mJ,2−mJ ]}]− E
x
p[ṽ(X

∆
tp+1

)1{X∆
tp+1

/∈(−2−mJ,2−mJ ]}]

+E
x
p [ṽ(X

∆
tp+1

)−HVJ
v(X∆

tp+1
)] +

1

J

J
∑

r=1−J

(

HVJ
v
( r

2m

)

− v
( r

2m

))

E
x
p[ϕJ,r(X

∆
tp+1

)];

ζm,J,ω
v (tp, x) :=E

x
p [v(X

∆
tp+1

)1{X∆
tp+1

/∈(−2−mJ,2−mJ ]}∆ωp+1]− E
x
p[ṽ(X

∆
tp+1

)1{X∆
tp+1

/∈(−2−mJ,2−mJ ]}∆ωp+1]

+E
x
p [(ṽ(X

∆
tp+1

)−HVJ
v(X∆

tp+1
))∆ωp+1] +

1

J

J
∑

r=1−J

(

HVJ
v
( r

2m

)

− v
( r

2m

))

E
x
p[ϕJ,r(X

∆
tp+1

)∆ωp+1].

Applying all the results above and the standing assumptions, we can derive the recurring error
formulas of our SWIFT BSDE scheme:

1

M1
|z∆p (x)− ẑ∆p (x)| ≤|ζm,J

z∆p+1
(tp, x)|+ |ζm,J,ω

y∆p+1
(tp, x)|+ |ζm,J,ω

fp+1
(tp, x)|

+
1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|)

+
1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)∆ωp+1]|, (4.6)

and

1

M2
|y∆p (x)− ŷ∆,I

p (x)| ≤M3 + |ζm,J

z∆
p+!

(tp, x)|+ |ζm,J,ω

y∆p+1
(tp, x)| + |ζm,J,ω

fp+1
(tp, x)|+ |ζm,J

y∆p+1
(tp, x)|+ |ζm,J

fp+1
(tp, x)|

+
1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ẑ∆p+1

( r

2m

)
∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p[ϕJ,r(X

∆
tp+1

)∆ωp+1]|)

+
1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ŷ∆p+1

( r

2m

)∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|),

(4.7)

with constants M1, M2 and M3 depending on the underlying FBSDE, the discretization scheme
and the Picard iteration errors, but not depending on m and J . Their proof is left for the appendix.

4.4.1 Error bound and choice of parameters

An error bound at (0, x0) for applying the SWIFT scheme to a FBSDE system can be found by
repeatedly applying Equations (4.6) and (4.7). This bound is given by the weighted sum of the
local approximation errors for each point in the grid {(0, x0)} ∪ {(tp, 2−mr)|t = 1, . . . , P and r =
1− J, . . . , J}, with the weight being 1 for (0, x0) and the weight being

∑

u∈υp

1

Jp

p
∏

l=1

(|Eul−1

l [ϕJ,ul
(X∆

tl
)]|+ |Eul−1

l [ϕJ,ul
(X∆

tl
)∆ωl+1]|), (4.8)
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for {(tp, 2−mr)|t = 1, . . . , P and r = 1 − J, . . . , J}, where υp is the set containing length p + 1
vectors u = (u0, u1, . . . , up), with the first element u0 = x0 and other elements equal to 2−mr for
r = 1− J, . . . , J . A simple example of deriving such an error bound is included in the appendix.

However, since this error bound uses local approximation errors from multiple points in a
grid, actually calculating the error bound would be costly. The weight and the local error behave
differently at different grid points. Whenever |r| is small, the local error converges exponentially
in numerical tests with fixed 2−mJ and increasing J , but it may fail to converge to zero when |r|
is close to J . On the other hand, when |r| is close to J , the weight in Equation (4.8) tends to zero
quickly and reduces the error. We do not have a simple formula to describe this balance. Last
but not least, parameter P , the number of time points, affects the total number of terms in the
error bound, the value of the local error and the value of the weight in Equation (4.8). It is highly
non-trivial to quantify the effect of P on the overall error from this error bound.

In practice, we would recommend a three-step approach to select the parameters for the scheme
and get a global picture of what the error may be. First of all, pick parameter P based on the
discretization error for (X,Y,Z). This can be done either through the error bound in Section 4.1
or other existing error bounds in the literature. The reason is that m and J have no effect on the
discretization error while P affects each part of the approximation error. Next, we should choose
our parameters J and m according to error formula (4.3). The interest is in the third term in
the equation, which increases with the truncation range but decreases with the wavelet order J .
Therefore we should first fix the truncation range 2−mJ to a constant value a in our scheme, the
tail probability outside our computational range is below a fixed tolerance level. This can be done
heuristically by considering the cumulants of XT , see [8]. Finally, we pick a J value such that the
overall error converges and adjust m accordingly so that the truncation range remains the same.
This approach is very useful for applications (compared to the error bound itself).

4.5 Computational Complexity

At each time-step tp, the following operations have to be performed:

• Computation of Ex
p [ϕJ,k(X

∆
tp+1

)] and E
x
p[ϕJ,k(X

∆
tp+1

)∆ωp+1] by the FFT algorithm, in O(J log(J))
operations. It is calculated only once at the terminal time-step if the characteristic function
of X∆ does not depend on the time point;

• Computation of ẑ∆p (x), ĥ(tp, x) and ŷ∆,0
p (x) by matrix-vector multiplications, in O(J2) oper-

ations;

• Computation of ŷ∆,I by I Picard iterations on an x-grid, in O(IJ) operations;

• Evaluation of f(tp, x, ŷ
∆,I
p (x), ẑ∆p (x)) in O(J) operations.

The most time-consuming part in our algorithm is the matrix-vector multiplication. The proposed
algorithms have linear computational complexity with respect to the time-steps P and the starting
evaluation at terminal time is of order O(J). In total, the complexity of the SWIFT-type methods
is O(J + P [J2 + IJ + J log(J) + J ]).
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✲✛

−2−mJ

α

2α+ 2−mJ 2β − 2−mJ 2−mJ

β

Figure 1: The approximation range (−2−mJ, 2−mJ ] and the accuracy range [α, β].

5 Antireflective boundary

Recalling Equation (4.3), the approximation of E[v(X∆
t+∆t)|X∆

t = x] by the SWIFT formula may
have a significant local error when two conditions are satisfied. The first condition being that the
alternating extension ṽ diverges from v in the range [−η − 2−mJ,−2−mJ ] or [2−mJ, η + 2−mJ ],
for some number η > 0 and the second condition being that the probability of X∆

t+∆t|X∆
t = x in

the aforementioned ranges is large. While the first condition is almost always true, given that X∆

is a diffusion process, the second condition is true only when the starting point x is close to the
boundary −2−mJ or 2−mJ . Therefore, there may be intervals (−2−mJ, α) and (β, 2−mJ ] where
the SWIFT formula is inaccurate.

We propose using an antireflective boundary technique to deal with this issue. Antireflective
boundary conditions form a popular technique for extrapolation in image deblurring methods. For
its applications in image deblurring, the reader may refer to [7] and the references therein.

In practice, assume that we approximate a function ϑ(x) by ϑ̂(x) on (−2−mJ, 2−mJ ] and we
know that the approximation is accurate for x ∈ [α, β], namely, |ϑ(x) − ϑ̂(x)| < ǫ, for some small
positive real number ǫ. Given the numbers α > −2−mJ and β < 2−mJ , so that there is some
inaccuracy near the boundary but (α, 2α + 2−mJ), (2β − 2−mJ, β) ⊂ [α, β] (see Figure 1). We
would extrapolate an approximation of ϑ(x) for x ∈ (−2−mJ, α) and x ∈ (β, 2−mJ ] by applying
antireflective conditions with the accurate approximation. For x ∈ (−2−mJ, 2−mJ ], we define







ϑ̂a(x) := 2ϑ̂(α) − ϑ̂(2α− x) for x ∈ (−2−mJ, α);

ϑ̂a(x) := ϑ̂(x) for x ∈ [α, β];

ϑ̂a(x) := 2ϑ̂(β) − ϑ̂(2β − x) for x ∈ (β, 2−mJ),

(5.1)

and use ϑ̂a instead of ϑ̂ as our approximation.
If ϑ is two times continuously differentiable on R, then, by a simple application of Taylor’s

theorem, we have:

ϑ(x) =ϑ(α) +
dϑ

dx
(α)(x − α) +

1

2

d2ϑ

dx2
(ς1)(x− α)2;

ϑ(2α − x) =ϑ(α)− dϑ

dx
(α)(x − α) +

1

2

d2ϑ

dx2
(ς2)(x− α)2,

where x ∈ (2−mJ, α), ς1 ∈ (x, α) and ς2 ∈ (α, 2α−x). The approximation error for x ∈ (−2−mJ, α)
is then bounded by

|ϑ(x)− ϑ̂a(x)| ≤|ϑ(x)− 2ϑ(α) + ϑ(2α− x)|+ 2|ϑ(α) − ϑ̂(α)| + |ϑ(2α− x)− ϑ̂(2α− x)|

≤(−2−mJ − α)2 sup
ς∈(−2−mJ,2α+2−mJ)

∣

∣

∣

∣

d2ϑ

dx2
(ς)

∣

∣

∣

∣

+ 3ǫ.

A similar formula can be derived for the set (2β− 2−mJ, 2−mJ). For the recursive scheme, one can
just apply Equation (5.1) at each time-step.

19



Remark 5.1. The range of accurate approximations for the SWIFT formula depends on the dis-
tribution of X∆

t+∆t|X∆
t =x, and, therefore, it is model dependent. The performance of applying the

antireflective boundary technique with the SWIFT formula depends on the smoothness of the target
function with respect to starting point x, the accuracy of the SWIFT formula in the range [α, β]
and the length of the range.

6 Numerical experiments

Several numerical studies have been performed in MATLAB 9.0.0. The computer is equipped with
Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and 7.7 GB RAM. Four different discretization
schemes have been used to test the effect of various choices of θ on the numerical algorithm. They
are:

Scheme A: θ1 = 0, θ2 = 1, Scheme C: θ1 = 1, θ2 = 1,
Scheme B: θ1 = 0.5, θ2 = 1, Scheme D: θ1 = 0.5, θ2 = 0.5.

The function z∆p is solved explicitly in all schemes while y∆p is solved explicitly for scheme A
and implicitly with 5 Picard iterations for the other schemes.

For each given example, we associate our numerical algorithm with the computational domain
[κ1 − L

√
κ2, κ1 + L

√
κ2], where cumulants κ1 = x0 + µ(0, x0)T and κ2 = σ2(0, x0)T and L = 10.

It is similar to the setting in [18]. The value 2−mJ = L
√
κ2 is a constant for each example. The

value of J is assumed to be 29.

6.1 Example 1

This example has been studied in [18] and is originally from [20]. The considered FBSDE is
{

dXt = dωt,
dYt = −(YtZt − Zt + 2.5Yt − sin(t+Xt) cos(t+Xt)− 2 sin(t+Xt))dt+ Ztdωt.

(6.1)

We take the initial and terminal conditions x0 = 0 and YT = sin(XT + T ).
The exact solution is given by

(Yt, Zt) = (sin(Xt + t), cos(Xt + t)). (6.2)

The terminal time is set to be T = 1 and (Y0, Z0) = (0, 1). The driver function f depends on both
time t and current state Xt. The results for the quick SWIFT method are presented in Figure 2a
while the results for the mixed SWIFT method are presented in Figure 2b. We observe that there
are no significant differences between the quick SWIFT and mixed SWIFT method. For schemes
A, B and C, both approximation errors for Y0(x0) and Z0(x0) are of O(∆t) order, while the errors
converge with O((∆t)2) for scheme D.

Remark 6.1. The driver functions for some examples in this section are not universally Lipschitz.
However, one should notice that for the contraction argument in Section 4.3 to be valid, for any
fixed z, the driver function should be Lipschitz with respect to y. All the driver functions in this
section satisfy this weaker condition. We aim for clear presentation rather than general applicability
when we designed the assumptions and conditions and our method can be applied to a broader
class of BSDEs than we described here. For a more in-depth analysis of the application of Picard
iterations in the numerical treatment of BSDEs, the reader is referred to [10].
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6.2 Example 2: European call option

Next, we calculate the price v(t, ST ) of a call option under the Black-Scholes model by solving an
FBSDE. The underlying process satisfies:

dSt = µ̄Stdt+ σ̄Stdωt. (6.3)

Along the line of reasoning in [18], we assume that the financial market is complete, there are
no trading restrictions and the call option can be perfectly hedged. Then (v(t, St), σ̄StDsv(t, St))
solves the FBSDE,

{

dSt = µ̄Stdt+ σ̄Stdωt,

dYt = −(−rYt − µ̄−r
σ̄ Zt)dt+ Ztdωt,

(6.4)

with terminal condition YT = max(ST −K, 0). The driver function is continuous and linear with
respect to y and z. We use the following parameter values in our test:

S0 = 100,K = 100, r = 0.1, µ̄ = 0.2, σ̄ = 0.25, T = 0.1. (6.5)

The exact solutions Y0 = 3.65997 and Z0 = 14.14823 are given by the Black-Scholes formula first
shown in [3]. We switch to the log-asset domain Xt = log(St) and solve

{

dXt =
(

µ̄− 1
2 σ̄

2
)

dt+ σ̄dωt,

dYt = −(−rYt − µ̄−r
σ̄ Zt)dt+ Ztdωt,

(6.6)

where YT = max(exp(XT )−K, 0).
For the result of the quick SWIFT method, we refer to Figure 3a. Immediately, we notice that

the result of scheme D does not improve when increasing the number of time-steps. This is due to
the discontinuity of the terminal value of Z which creates a significant error. For the mixed SWIFT
method, shown in Figure 3b, the error from the discontinuity has been removed. The approximate
values ŷ∆0 (x0) and ẑ∆0 (x0) converge with approximately order 1 with respect to ∆t for schemes A,
B, and C and about order 2 for scheme D.

Since the driver function in Equation (6.6) depends on µ̄, the approximation error also depends
on µ̄, even though the final result v(0, x0) is unrelated to the drift. For the same number of
time-steps P , the error increased with the increase of µ̄, as shown in Figure 4.

The approximation algorithm can be further improved by applying antireflective boundary
conditions in the recursive time-steps. In Figure 5 we see results of adding an antireflective step
in a mixed SWIFT algorithm. The approximations near the middle of computational range are
almost identical with the reference value, but the approximations with antireflective adjustment
near both ends of the interval appear to be much better than the ones without.

6.3 Example 3: Bid-ask spread for interest rate

We next consider a financial model introduced in [2], where we have distinct borrowing and leading
interest rates. The resulting market is imperfect and the driver function is non-linear.

Suppose that an agent can invest in bonds with risk-free return rate r and borrow money at
rate R > r. For any European-type derivative with payoff g(XT ) at time T , where the underlying
asset St = log(Xt) follows a geometric Brownian motion, its price at time 0 can be obtained by
solving the FBSDE:

{

dXt =
(

µ̄− 1
2 σ̄

2
)

dt+ σ̄dωt,

dYt = −
(

−rYt − µ̄−r
σ̄ Zt − (R− r)min

(

Yt − Zt

σ̄ , 0
))

dt+ Ztdωt,
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with the payoff as the terminal condition. We use the example studied in both [1] and [18]. The
payoff function is given by

g(XT ) = (eXT −K1)
+ − 2(eXT −K2)

+,

which equals a combination of a long call with strike K1 = 95 and two short calls with strike
K2 = 105. We use the parameter values

S0 = 100, r = 0.01, µ̄ = 0.05, σ̄ = 0.2, T = 0.25,K1 = 95,K2 = 105, R = 0.06.

We notice that ẑ∆0 (x0) fails to converge to the reference value with scheme D in Figure 6a. The
reference values, Y0 = 2.9584544 and Z0 = 0.55319, are obtained by the BCOS method with a
large number of time-steps P . Switching to the mixed SWIFT method, whose results are shown in
Figure 6b, the approximated error for Y converges to zero with order of about 1 for schemes A, B
and C and converges with order 3

2 for scheme D. For schemes B and C, we also have a first-order
convergence for Z but the convergence order is higher for schemes A and D.

6.4 Example 4

This example is taken from [19]. For the forward process, the drift and diffusion coefficients are
time- and state-dependent. We aim to solve the following FBSDE:







dXt =
1

1+2 exp(t+Xt)
dt+ exp(t+Xt)

1+exp(t+Xt)
dωt,

dYt = −
(

− 2Yt

1+2 exp(t+Xt)
− 1

2

(

YtZt

1+exp(t+Xt)
− Y 2

t Zt

))

dt+ Ztdωt,

with the terminal condition YT = g(XT ) =
exp(T+XT )

1+exp(T+XT ) .
The exact solutions are given by

(Yt, Zt) =

(

exp(t+Xt)

1 + exp(t+Xt)
,

(exp(t+Xt))
2

(1 + exp(t+Xt))3

)

. (6.7)

We choose terminal time T = 1 and initial condition x0 = 1.
For the results of the quick SWIFT method, we refer to Figure 7. While the total error is

different for each scheme, the approximated values ŷ∆0 (x0) and ẑ∆0 (x0) converge with O(∆t) for all
schemes, as expected. Here the weak order of the Euler scheme plays a prominent role as the drift
and volatility are state- and time- dependent.

6.5 Discussion

Compared with the BCOS method, the computational time for the SWIFT-type method is slightly
lower when the number of basis functions used is the same and the forward process is independent
of time. The most time-consuming portion is the matrix-vector multiplication used to calculate
the value of ẑ∆p and ĥ. We acknowledge that for the same error range, the BCOS and SWIFT-type
methods may require different numbers of basis functions.

From the numerical experiments, we conclude that the computation with scheme D often fails
to converge with ∆t when the time-step is small when using the quick SWIFT method. This is due
to the discontinuity of z∆P (x) in x. Schemes A, B and C behave similarly for the quick SWIFT and
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mixed SWIFT methods in our examples. However, scheme D often has the best performance in
the mixed SWIFT method. This means that damping the discontinuity in our scheme is beneficial.
The graphs also demonstrate that with a proper choice of SWIFT parameters, the approximation
error itself will be dominated by the discretization error and decreases with respect to the increase
of parameter P . It implies that the error of calculating expectation with SWIFT is relatively small.

7 Conclusion

A new probabilistic method for solving FBSDEs numerically has been proposed in this article.
It is derived from a time-discretization of the forward and backward stochastic differential equa-
tions, taking conditional expectations to get an Ftp-adapted approximation and calculating the
conditional expectations with the quick variant of the SWIFT formula.

We have shown that in order to apply the quick variant of the SWIFT formula, the continuity of
the target function has to be ensured. While applying the quick variant of SWIFT formula instead
of the original version introduces an extra error, it is of the same order of the original version
when the target function is continuous and drops quickly with respect to J , due to the exponential
convergence of the characteristic function for a smooth density. The error of applying the SWIFT
method is relatively minor compared to the discretization error for the stochastic process. However,
the quick variant of the SWIFT formula can greatly reduce the difficulties of our algorithm and
increase the computational speed. So we believe that the mixed SWIFT method provides a good
balance between efficiency and accuracy.

We have discussed the different approximation errors in detail in the paper. Additional attention
is needed for the error of the SWIFT formula near the computational boundary, as we explained in
Section 5. We also demonstrated how to improve our algorithm with the anti-reflective boundary
conditions. Finally, the applicability and the effectiveness of our numerical algorithm have been
tested with various FBSDEs, which all give positive results with the mixed SWIFT method.

Overall, applying the SWIFT method to solve discretized BSDEs retains the high accuracy of
Fourier inversion techniques, although the computations involved are greatly simplified. We also
gain additional freedom in adjusting the approximation values at each time point.
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A Appendix

A.1 Pointwise convergence of orthogonal projection

We shall demonstrate that under some mild assumptions on a square integrable function in (−2−mJ, 2−mJ ],
its orthogonal projection on VJ converges to the original function in a pointwise fashion, therefore
bounding our approximation error. It is an adaptation of the standard Dirichlet kernel argument
to our setting, a similar proof can be found in standard Fourier series textbook, like [17].

Theorem A.1. Let g be a square integrable function defined on the set (−2−mJ, 2−mJ ] and the
left- and right-side derivatives exist everywhere for its alternating extension g̃. If g̃ is continuous
in a neighborhood around point x, the following result holds:

lim
J→∞

HVJ
g(x) = g̃(x).

Proof. By direct calculation,

HVJ
g(x)

=
2m

J

J
∑

k=1

(

∫ 2−mJ

−2−mJ
g(ς) cos (2mCkς) dς cos (2

mCkx) +

∫ 2−mJ

−2−mJ
g(ς) sin (2mCkς) dς sin (2

mCkx)

)

=
2m

J

J
∑

k=1

(

∫ 2−mJ

−2−mJ
g̃(ς) cos (2mCk(ς − x)) dς

)

=
2m

J

J
∑

k=1

(

∫ 2−mJ

−2−mJ
g̃(̟ + x) cos (2mCk̟) d̟

)

=
2m

J

∫ 2−mJ

−2−mJ
g̃(̟ + x)ΥJ(̟)d̟, (A.1)

where

ΥJ(x) :=

J
∑

k=1

cos(2mCkx) =
sin(2m−1πx)

sin(2m−1πx/J)
. (A.2)

It can be shown that

2m

J

∫ 2−mJ

0
ΥJ(ς)dς =

2m

J

∫ 0

−2−mJ
ΥJ(ς)dς =

2

π

J
∑

k=1

(−1)k+1

2k − 1
=:

2

π
GJ . (A.3)

In fact, GJ is the famous Gregory-Leibniz series and we have limJ→∞GJ = π
4 .

Based on our assumption, at point x, limh→0+ g̃(x + h) = limh→0− g̃(x + h) = g̃(x). Also,
g(s+x)−g(x)

s 1{s∈(0,2−mJ)} and g(s+x)−g(x)
s 1{s∈(−2−mJ,0)} are integrable functions on (2−mJ, 2−mJ ].

Note that in our construction, 2−mJ is a positive constant (a) and m is a function of J .
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Therefore,

HVJ
g(x)− 4

π
GJ g̃(x)

=
2m

J

∫ a

0
(g̃(̟ + x)− g̃(x))ΥJ (̟)d̟ +

2m

J

∫ 0

−a
(g̃(̟ + x)− g̃(x))ΥJ (̟)d̟

=
2

π

∫ a

0

g̃(̟ + x)− g̃(x)

̟

π̟/2a

sin(π̟/2a)
sin(2m−1π̟)d̟

+
2

π

∫ 0

−a

g̃(̟ + x)− g̃(x)

̟

π̟/2a

sin(π̟/2a)
sin(2m−1π̟)d̟. (A.4)

Since x
sin(x) is integrable on [−π

2 ,
π
2 ] and m tends to infinity whenever J tends to infinity, the last

two terms go to 0, when J tends to infinity. This is due to the Riemann-Lebesgue Lemma. So, we
have

lim
J→∞

HVJ
g(x) = lim

J→∞

4

π
GJ g̃(x) = g̃(x), (A.5)

and complete the proof.

A.2 Proof of Equations (4.6) and (4.7)

Proof. Using Equations (2.3b), (4.1), (4.4), (4.3), and standing assumption (A3), we have

|ẑ∆p (x)− z∆p (x)|

≤1− θ2
θ2

|Ex
p[z

∆
p+1(X

∆
tp+1

)]− Ê[z∆p+1(X
∆
tp+1

)|X∆
tp = x]|

+
1

θ2∆t
|Ex

p[y
∆
p+1(X

∆
tp+1

)∆ωp+1]− Ê[y∆p+1(X
∆
tp+1

)∆ωp+1|X∆
tp = x]|

+
1− θ2
θ2

|Ex
p[f(tp+1,X

∆
tp+1

, y∆p+1(X
∆
tp+1

), z∆p+1(X
∆
tp+1

))∆ωp+1]

− Ê[f(tp+1,X
∆
tp+1

, y∆p+1(X
∆
tp+1

), z∆p+1(X
∆
tp+1

))∆ωp+1|X∆
tp = x]|

≤1− θ2
θ2

|ζm,J

z∆p+1
(tp, x)|+

1

θ2∆t
|ζm,J,ω

y∆p+1
(tp, x)|+

1− θ2
θ2

|ζm,J,ω
fp+1

(tp, x)|

+
1− θ2
θ2

1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)]|

+
1

θ2∆t

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)
∣

∣

∣
|Ex

p[ϕJ,r(X
∆
tp+1

)∆ωp+1]|

+
1− θ2
θ2

1

J

J
∑

r=1−J

∣

∣

∣
f
(

tp+1,
r

2m
, y∆p+1

( r

2m

)

, z∆p+1

( r

2m

))

− ρfp+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)∆ωp+1]|

≤1− θ2
θ2

|ζm,J

z∆p+1
(tp, x)|+

1

θ2∆t
|ζm,J,ω

y∆p+1
(tp, x)|+

1− θ2
θ2

|ζm,J,ω
fp+1

(tp, x)|

+
(1− θ2)(1 +M)

θ2

1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|)
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+

(

1

θ2∆t
+

(1− θ2)M

θ2

)

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)∆ωp+1]|

Note that we have added some extra terms in the last inequality to simplify the expression. Taking

the maximum over
{

(1−θ2)(1+M)
θ2

, 1
θ2∆t +

(1−θ2)M
θ2

}

finishes the proof for Equation (4.6).

Using Equations (4.5), (4.6), (3.5), (3.7), (4.1),(4.3), and standing assumption (A3), we have

|ŷ∆,I
p − y∆p (x)|

≤1 + ξ

1− ξ
εPicard
p +

ξ

1− ξ
|ẑ∆p (x)− z∆p (x)| + 1

1− ξ
|ĥ(tp, x)− h(tp, x)|

≤1 + ξ

1− ξ
εPicard
p +

M1 · ξ
1− ξ

(|ζm,J

z∆p+1
(tp, x)|+ |ζm,J,ω

y∆p+1
(tp, x)|+ |ζm,J,ω

fp+1
(tp, x)|)

+
M1 · ξ
1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|)

+
M1 · ξ
1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)∆ωp+1]|

+
1

1− ξ
|Ex

p [y
∆
p+1(X

∆
tp+1

)]− Ê[y∆p+1(X
∆
tp+1

)|X∆
tp = x]|

+
∆t(1− θ1)

1− ξ
|Ex

p[f(tp+1,X
∆
tp+1

, y∆p+1(X
∆
tp+1

), z∆p+1(X
∆
tp+1

)]− Ê[f(tp+1,X
∆
tp+1

, y∆p+1(X
∆
tp+1

), z∆p+1(X
∆
tp+1

))|X∆
tp = x]||

≤1 + ξ

1− ξ
εPicard
p +

M1 · ξ
1− ξ

(|ζm,J

z∆p+1
(tp, x)|+ |ζm,J,ω

y∆p+1
(tp, x)|+ |ζm,J,ω

fp+1
(tp, x)|)

+
1

1− ξ
|ζm,J

y∆p+1
(tp, x)|+

∆t(1− θ1)

1− ξ
|ζm,J
fp+1

(tp, x)|

+
M1 · ξ
1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)
∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|)

+
M1 · ξ
1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)∆ωp+1]|

+
1

1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)]|

+
∆t(1− θ1)

1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
f
(

tp+1,
r

2m
, y∆p+1

( r

2m

)

, z∆p+1

( r

2m

))

− ρfp+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)]|

≤1 + ξ

1− ξ
εPicard
p +

M1 · ξ
1− ξ

(|ζm,J

z∆p+1
(tp, x)|+ |ζm,J,ω

y∆p+1
(tp, x)|+ |ζm,J,ω

fp+1
(tp, x)|)

+
1

1− ξ
|ζm,J

y∆p+1
(tp, x)|+

∆t(1− θ1)

1− ξ
|ζm,J
fp+1

(tp, x)|

+
M1 · ξ +M∆t(1− θ1))

1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p[ϕJ,r(X

∆
tp+1

)∆ωp+1]|)
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+
M1 · ξ + 1 +M∆t(1− θ1)

1− ξ

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|).

This concludes the proof if M2 :=
M1·ξ+1+M∆t(1−θ1)

1−ξ and M3 :=
1+ξ
1−ξ

εPicard
p

M2
. Again, extra terms are

included in the expression to simplify the formula.

A.3 A simple example for deriving the error formula

In this section, we would use the result in Section 4.4 to derive an error formula for the approxi-
mation of Example 2 in Section 6.2. In addition to the parameters provided in Section 6.2, we let
θ1 = 0, θ2 = 1 and P = 2. Note that P = 2 is merely used here to simplify our expression.

It is clear that driver function f and terminal function g satisfy all standing assumptions with
the Lipschitz coefficient of f with respect to y and z being 0.4. We have ∆t = 0.05, ξ = εPicard

p = 0
for p = 0, 1 in our setting. Using the derivation in Appendix B, Equations (4.6) and (4.7) can be
simplified as follows:

1

20
|ẑ∆p (x)− z∆p (x)| ≤|ζm,J,ω

y∆p+1
(tp, x)|+

1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)
∣

∣

∣
|Ex

p [ϕJ,r(X
∆
tp+1

)∆ωp+1]|

1

1.02
|ŷ∆,I

p (x)− y∆p (x)| ≤|ζm,J

y∆p+1
(tp, x)|+ |ζm,J

fp+1
(tp, x)|

+
1

J

J
∑

r=1−J

∣

∣

∣
z∆p+1

( r

2m

)

− ρz∆p+1

( r

2m

)
∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p[ϕJ,r(X

∆
tp+1

)∆ωp+1]|)

+
1

J

J
∑

r=1−J

∣

∣

∣
y∆p+1

( r

2m

)

− ρy∆p+1

( r

2m

)
∣

∣

∣
(|Ex

p [ϕJ,r(X
∆
tp+1

)]|+ E
x
p [ϕJ,r(X

∆
tp+1

)∆ωp+1]|),

for p = 0, 1. Therefore, the error of applying the quick SWIFT scheme to the discretizated system
reads:

|ŷ∆,I
0 (x0)− y∆1 (x0)|

≤1.02|ζm,J

y∆1
(0, x0)|+ 1.02|ζm,J

f1
(0, x0)|

+
1.02

J

J
∑

r=1−J

∣

∣

∣
z∆1

( r

2m

)

− ẑ∆1

( r

2m

)
∣

∣

∣
(|Ex0

0 [ϕJ,r(X
∆
t1 )]|+ E

x0
0 [ϕJ,r(X

∆
t1 )∆ω1]|)

+
1.02

J

J
∑

r=1−J

∣

∣

∣
y∆1

( r

2m

)

− ŷ∆,I
1

( r

2m

)∣

∣

∣
(|Ex0

0 [ϕJ,r(X
∆
t1 )]|+ E

x0
0 [ϕJ,r(X

∆
t1 )∆ω1]|)

≤1.02|ζm,J

y∆1
(0, x0)|+ 1.02|ζm,J

f1
(0, x0)|

+
1

J

J
∑

r=1−J

(

20.4
∣

∣

∣
ζm,J,ω

y∆2

(

t1,
r

2m

)∣

∣

∣
+ 1.022

∣

∣

∣
ζm,J

y∆2

(

t1,
r

2m

)∣

∣

∣
+ 1.022

∣

∣

∣
ζm,J
f2

(

t1,
r

2m

)∣

∣

∣

)

(|Ex0
0 [ϕJ,r(X

∆
t1 )]|+ E

x0
0 [ϕJ,r(X

∆
t1 )∆ω1]|).

Note that there is no recurring error at t2 as we know the exact terminal condition.
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(a) Quick SWIFT with J = 29
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(b) Mixed SWIFT with J = 29

Figure 2: Results example 1, left: error in y(0, x0), right: error in z(0, x0)
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(a) Quick SWIFT with J = 29
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(b) Mixed SWIFT with J = 29

Figure 3: Results example 2, left: error in y(0, x0), right: error in z(0, x0)
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Figure 4: Results example 2 for different values of µ̄ (Scheme C)
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Figure 5: Results example 2 with and without applying anti-reflective boundary technique (Scheme
D, P = 1000 and J = 29)
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(a) Quick SWIFT with J = 29
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(b) Mixed SWIFT with J = 29

Figure 6: Results example 3, left: error in y(0, x0), right: error in z(0, x0)
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Figure 7: Results example 4, (J = 29), left: error in y(0, x0), right: error in z(0, x0)
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