
From concentration profiles to concentration maps.

New tools for the study of loss distributions.

Andrea Fontanari∗- TU Delft and CWI
Pasquale Cirillo†- TU Delft

Cornelis W. Oosterlee - CWI and TU Delft

Abstract

In this work we introduce a novel approach to risk management, based on the study of concen-
tration measures of the loss distribution.

In particular we show that indices like the Gini index, especially when restricted to the tails
by conditioning and truncation, represent an accurate way of assessing the variability of the larger
losses–the most relevant ones–and the precision of common risk management measures like the
Expected Shortfall. We then introduce the Concentration Profile, that is a sequence of truncated Gini
indices that, we show, is able to characterize the loss distribution, providing interesting information
about tail risks.

Combining concentration profiles and standard results from utility theory, we then develop a
Concentration Map, which can be used to assess the risk attached to potential losses on the basis of
the risk profile of the user, her beliefs and historical data.

Finally, we use the sequence of truncated Gini indices as weights for the expected shortfall,
defining the so-called Concentration Adjusted Expected Shortfall, a measure able to capture interesting
additional features of tail risk.

All tools are applied to empirical data to show how to use them in practice.
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1 Introduction

The aim of this paper is to introduce a way of dealing with loss distributions, tail risk, and risk
management in general, based on a new class of tools derived from concentration measures.

The object of study is the loss distribution, for which we assume data is available. At present, we
are not interested in analyzing the type of risk leading to the possible losses; it can be market risk,
credit risk, operational risk or any other type of risk. In this work we restrict our attention to a static
framework, in which the loss distribution is given and does not change over time. An example can
be the one-year credit loss distribution, commonly used by banks under the Basel framework [2, 3].

As known, Value-at-Risk (VaR) and Expected Shortfall (ES) represent two important risk measures
in modern risk management [17]. However, despite their popularity, these measures are not really
able to convey reliable information on how losses are dispersed in the tail. It is not difficult to image
different distribution tails sharing the same VaR and ES, but with different risk profiles, because of
the different “fatness". A measure of the dispersion of the losses beyond Value-at-Risk is therefore
needed. A measure that plays the role of precision parameter for the Expected Shortfall, informing
how dispersed the losses are beyond VaR and around ES.

This measure should be able to deal with the special features of the loss function, especially those
related to the upper tail, not to be biased and reliable. Given the typical heavy-tailed nature of large
losses, any measure based on the variance should for example be avoided. In fact, empirical studies
[17, 20, 23] show that often the assumption of finite second moment, i.e. E(Y2) < ∞, is too stringent
for the random variable Y representing losses.

Our proposal is to make use of concentration measures [14, 21, 32] as a way of measuring tail risk
dispersion. In particular, we focus our attention on the Lorenz curve L(x) [22] and the corresponding
Gini index G(x) [19], for which we derive a “risk management" interpretation. In particular we show
how the Gini index does not only provide a robust measure for the precision of the Expected Shortfall,
but it can also be used as an alternative measure for the fat-tailedness of the loss distribution itself.

Naturally, other concentration measures like the Pietra index [27] could be used. However, pre-
liminary studies have shown that, in applications, there is no particular gain in substituting the Gini
index with the Pietra index, while the mathematical complexity increases.

It is important to stress that the use of concentration measures in finance and, at least partially, in
risk management, is not completely novel. An interesting application of the Gini index as a substitute
of the more common standard deviation is for example the Mean-Gini efficient portfolio frontier
developed by Shalit and Yitzhaki [31], in which the usual portfolio theory is rewritten using the
Gini index as the reference risk measure. However, as we will soon show, we here present a new
application of these concentration measures, also introducing new tools.

Our final goal is not to criticize VaR and ES per se, but to support them, improve them, compensat-
ing for some of their shortcomings. VaR and ES are there to stay, because of the financial regulations
[2, 3]. The idea is to make them more reliable.

In this work we discuss how a proper sequence of truncated Gini indices, which we call Con-
centration Profile, can be used to characterize the loss distribution, trying not only to understand the
possible parametric family (lognormal, Pareto, Weibull, etc.), but also grasping some features that are
not immediately observable from data, like the actual behavior of risk in the right tail. For example,

2



when considering Paretian tails, the prototype of fat tails, the concentration profile tells us that risk
does not vary, as it is evident from the constant concentration profile of the Pareto distribution (see
below). Paretian losses maintain their riskiness notwithstanding the VaR level we might be interested
in; and this risk is naturally higher the fatter the right tail.

We provide a full description of the use of the concentration profile, also offering quick heuristics
for its use in everyday business. A possible use of the concentration profile as a goodness-of-fit tool
is also discussed.

We then introduce the so-called Risk Concentration Map. This is a graphic tool identifying the main
risk factors encoded in the concentration profile, mapping them into an easily readable plot in which,
through the use of a risk and utility function approach [10], we are able to attach a synthetic risk
score to a given concentration profile. This risk concentration map can be seen as a "traffic light" to
have a quick-yet-comprehensive assessment of the risk of losses. Additionally, it can also be used
to compare different loss distributions in terms of their concentration risk, enabling a comparison
between portfolios with different scales and magnitudes, given that our approach is essentially scale-
free.

Finally, to complement the information provided by the concentration profile, we introduce a
Concentration Adjusted Expected Shortfall (CAES), which is nothing but the Expected Shortfall at level
α, multiplied by the corresponding truncated Gini index. This quantity proves to be very useful in
characterizing tail risk. In fact, while the ES is bound to increase, for increasing confidence levels, thus
moving right into the upper tail, the corresponding Gini could compensate this growth, informing
that the tail is becoming less extreme, and losses less erratic above a given threshold. We provide
guidelines for the use of the CAES.

The paper is structured as follows: in Section 2 we review some basic concepts about concentra-
tion measures. In Section 3 some common measures of risk used in risk management are analyzed
and put in relation with the concentration measures. In Section 4, we introduce and study the con-
centration profile, while in Section 5 we describe the concentration map. In Section 6 some additional
extension based on the concentration adjusted expected shortfall are discussed. In Section 7 empir-
ical results on simulated and actual data are provided. Section 8 closes the paper. At the end of the
paper, an Appendix contains some more technical details of our work, like proofs and explicatory
computations.

2 Basic concentration quantities

2.1 The Lorenz Curve

At the beginning of the XX century, economists and social scientists started discussing about possible
ways of measuring how wealth is distributed among individuals. In particular, the main question
was if it were possible to deliver a compact measure–free of scale–that could allow for comparisons
among different countries at different times. A relevant answer to this question was offered by Max
Lorenz in 1905 with his pioneering work on the concentration of wealth [22]. The paper introduced
what is now known as the Lorenz Curve, a fundamental building block for studying the distribution
and concentration of wealth among individuals. The success of the Lorenz curve was so strong that
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it soon started being used in other fields of science beyond economics, such as physics [15], survival
analysis and biostatistics [4], and so on [13, 16].

Consider a positive continuous random variable Y ∈ R+, belonging to the L1 class, such that
µ = E(Y) < ∞. Let F(y) = P(Y ≤ y) be its cumulative distribution function. The quantile function
of Y is Q(u) = F−1(u), where F−1(u) = inf{y : F(y) ≤ u} with 0 ≤ u ≤ 1.

The Lorenz curve L(x) is formally given by

L(x) =
´ x

0 Q(u)du´ 1
0 Q(u)du

, 0 ≤ x, u ≤ 1. (1)

In terms of wealth, the Lorenz curve reads as follows: for a given x ∈ [0, 1], L(x) tells us that
x× 100% of the population owns L(x)× 100% of the total wealth. From this interpretation we see that
the scale–the total amount of wealth–is not taken into consideration, whereas the way it is distributed
among the individuals is the key information.

Statistically, the Lorenz curve L : [0, 1] → [0, 1] defined in equation (1) is a continuous, non-
decreasing, convex function, differentiable almost everywhere in [0, 1], such that L(0) = 0 and L(1) =
1. It is bounded from above by the so called perfect equality curve, i.e. Lpe(x) = x, and from below
by the perfect inequality curve, i.e.

Lpi(x) =

0 0 ≤ x < 1

1 x = 1

The perfect equality line Lpe indicates the purely theoretical situation in which everyone possesses
the same amount of wealth in the economy. Conversely, the perfect inequality line Lpi states that only
one individual owns all the wealth in the society. A visual representation of a possible Lorenz curve
is given in Figure 1, where we also provide Lpe and Lpi.

Given its strong relation with the quantile function Q, the Lorenz curve is able to fully character-
ize a distribution [21]. If we know the exact functional form of L(x), we can recover F(y). However,
graphically, it is not possible to discriminate among distributions just looking at their Lorenz curves
[7]. A graph like the one in Figure 1 can give us a flavor of how unequal a society is, but it can-
not tell us whether the underlying distribution is a Weibull or rather a lognormal, just to name two
distributions.
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Figure 1: Graphical representation of a Lorenz Curve, of the perfect equality line and of the perfect inequality
case. We also show the geometric interpretation of the Gini index as the ratio of area A over A+B.

2.2 The Gini Index

Strictly related to the Lorenz Curve are the so-called concentration indices, the most celebrated, used
and abused one being the Gini index [19]. Naturally, many other indices based on the Lorenz curve
have been introduced, e.g. the Pietra index [27] and the Generalized Gini [25]. We do not cover them
here, but we refer to [14] for a review.

All concentration indices can be derived and computed in many different yet equivalent ways. In
[32] more than fourteen different possibilities are given to express the Gini index alone. Here we will
just focus on a few of them.

The first characterization is based on the Lorenz curve, in particular on the distance between the
perfect equality line Lpe(x) and the Lorenz curve L(x). The idea is very simple: the closer these two
lines are, the more equal the society is, and the concentration of wealth lower. The distance between
these curves can be expressed as

Dp =

∥∥L(x)− Lpe(x)
∥∥

p∥∥Lpi(x)− Lpe(x)
∥∥

p

, 0 ≤ Dp ≤ 1, (2)

where the denominator is just a normalizing factor.
From equation (2) it is clear that, by varying the type of distance ‖·‖p, we can get different types

of indices. The Gini index G ∈ [0, 1] is obtained by fixing p = 1. Formally,

G = D1 =

´ 1
0 (L(x)− x)dx

−
´ 1

0 xdx
(3)

= 1− 2
ˆ 1

0
L(x)dx
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An alternative way to define the Gini index is purely geometrical. As also shown in Figure 1, G
can be defined as the ratio between area A, the area between the Lorenz curve and the perfect equality
line, and the total area A + B lying below the perfect equality, i.e.

G =
A

A + B
.

Another interesting formulation is the so-called “stochastic” representation of the Gini index [14],
for which

G =
E(| Y1 −Y2 |)

2E(Y)
=

E((Y1 −Y2)
+)

E(Y)
∈ [0, 1], (4)

where Yi, i = 1, 2 are i.i.d copies of the same random variable Y ∼ F(y), and (Y1 − Y2)
+ =

max{Y1 −Y2; 0}.
Looking carefully at formula (4), we discover that the Gini index is nothing but the normalized

average of the distance between two random independent observations taken from the underlying
distribution F(y). Thanks to the expression as expectation of L1 distances, the index can be rephrased
as expectation of max{Y1 − Y2, 0}. This formulation shows that the Gini index can be considered as
an L1 alternative to the skewness, for measuring the asymmetry of the data, in particular to the right
[14].

It may useful to compare the Gini index with some variance based measure like the variance-to-
mean ratio defined as

VM =
E(Y−E(Y))2

E(Y)
.

The VM ratio measures the dispersion of data around the mean, without considering the direc-
tion of this dispersion, thus implicitly assuming them to be symmetric. However, as usual in risk
management, this is not the case. In particular, if the distribution of losses is asymmetric, high values
of VM are usually driven by the apparent “outliers” that occur because of asymmetry rather than for
a real dispersion of the data. Additionally, since the distance is squared, this error is even magnified,
while small deviations are compressed, thus leading to misleading values.

The Gini index, on the contrary, works well when asymmetries arise, since it implicitly assumes
a “direction” for the dispersion of the observations: the right tail. Therefore it provides a better and
more precise measure of their variability.

Another important feature which makes the Gini superior to variance-based measures is its for-
mulation in terms of the L1 distance. The computation of the Gini index thus only requires the mean
to be finite, while all higher moments can be infinite. This is not the case when dealing with the
variance-to-mean ratio. Imagine our data come from a Pareto distribution whose c.d.f is given in
Table 1 and assume ρ ∈ (1, 2]. In this case, any measure which requires a squared expectation such
as the variance cannot be meaningfully computed, because it is theoretically infinite. Conversely, the
Gini index can be easily obtained.

Let’s summarize the main properties of the Gini index:

• The Gini index is bounded between 0 and 1; G = 0 means that the Lorenz curve lies exactly on

6



the perfect equality line, while G = 1 means that the Lorenz curve corresponds to the “perfect
inequality” line.

• The Gini index is an L1- measure, meaning that it can be computed for all random variables
admitting a finite mean, without any further requirement. This is not true for measures like
VM for which the second moment needs to be finite.

• The Gini index is a quasi-convex measure [5], and this has clear implications in terms of risk
management. Quasi-convexity is indeed a more realistic relaxation of convexity, with important
consequences for sub-additivity and risk diversification. In particular, quasi-convexity allows
to deal better with distributions of risk that are not necessarily closed under convolution.

In Table 2 some examples of closed formulas for the Gini indices and the Lorenz curves for the
same distributions of Table 1 are given.

Distribution c.d.f p.d.f. Support Shape

Weibull F(y) = 1− e−(
y
λ )

γ
f (y) = γ

λ (
y
λ )

γ−1e−(
y
λ )

γ
y ∈ R+ γ ∈ R+

Lognormal F(y) = Φ( ln(y)−µ
σ ) f (y) = 1

σ
√

2π
e
−(ln(y)−µ)2

σ2 y ∈ R+ σ ∈ R+

Exponential F(y) = 1− e−
y
λ f (y) = λe−yλ y ∈ R+ None

Pareto F(y) = 1− ( y
y0
)−ρ f (y) = ρyρ

0
xρ−1 1{y≥y0} y ∈ [y0,+∞) ρ ∈ R+

Table 1: C.d.f., p.d.f., support and shape parameter of some of the most used distributions in risk management.

Distribution Gini Index Lorenz Curve x ∈ [0, 1]

Weibull 1− 2−
1
γ L(x) = 1− Γ(− log(1−x),1+ 1

γ )

Γ(1+ 1
γ )

Lognormal 2Φ( σ√
2
)− 1 L(x) = Φ(Φ−1(x)− σ)

Exponential 1
2 L(x) = x + x(− log(1− x)) + log(1− x)

Pareto 1
2ρ−1 L(x) = 1− (1− x)

ρ−1
ρ

Table 2: Gini index and Lorenz curve for the same distributions of Table 1 .

3 Basic concepts of Risk Management

From now on, Y ∈ R+ is the continuous random variable representing losses, and F(y) is the corre-
sponding loss distribution function.
Regarding the loss distribution, some stylized facts can be derived from empirical analysis, e.g.
[21, 23], and it is useful to keep them in mind, when dealing with risk measures. In a nutshell:

• The loss distribution is asymmetric and right-skewed [21]. This typically means that the right
tail has more mass than the left one, when losses are taken to be positive quantities and profits
are negative.
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• The loss distribution is usually fat tailed [17, 21]. Paretianity emerges on the right tail, often
leading to the non-existence of higher-order moments. Very unpleasant things are likely to
happen. This brings to the next point.

• The loss distribution is typically L2 integrable, but there are several cases in which it is only
L1 integrable [23]. The practical implication is clear: measures requiring the existence of the
moments that may not exist are not appropriate under fat-tailed losses1.

In risk management, we are often not interested in studying the entire distribution of losses, but a
part of it, usually the right tail, where the larger losses concentrate. Most Basel regulations [2, 3], but
also Solvency II [29] for insurance companies, deal with the large unexpected losses, the few game-
changers, not the many small negligible losses we can hedge. This requires us to deal with truncated
random variables and distributions, rather than with the original ones.
Below we provide some basic quantities that we will use in the rest of the paper.

Definition 1. Given a random variable Y ∈ R+ with c.d.f. F(y) and p.d.f. f (y), its (left-) truncated
counterpart YT has c.d.f. FT(y) at truncation level a > 0 defined as follows:

FT(y) =
F(y)− F(a)

1− F(a)
, a ≤ y ≤ ∞,

and p.d.f

fT(y) =
f (y)

1− F(a)
.

The quantities FT(y) and fT(y) are known as exceedance distribution and exceedance density of
the random variable Y respectively.

Definition 2. Given a confidence level α ∈ (0, 1), the Value-at-Risk (VaRα) is the statistical quantile
of the loss distribution function F(y) defined as

VaRα = inf{y ∈ R : P(Y ≥ y) ≤ 1− α} = inf{y ∈ R : F(y) ≥ α}

Definition 3. Given a VaRα, the Expected Shortfall ESα, for Y ∈ R+ with c.d.f. F(y), is given by

ESα = E(Y | Y > VaRα)

Interestingly, the ESα is nothing more than the mean of the truncated random variable YT , when
the truncation occurs at truncation level a = VaRα. Just notice that

E(Y | Y > a) =
ˆ +∞

a
y fT(y)dy, a > 0.

VaRα and ESα are two fundamental measures of risk in modern risk management. It is well-
known that while the expected shortfall is always coherent (positive homogeneous, monotone, trans-
lation invariant and sub-additive), the value-at-risk is not, unless we restrict our attention to elliptic

1In the case of operational risk, even the first moment, the mean, may be infinite [8, 24], but we ignore this radical case here.
Naturally, in such a situation, the Gini index would not be defined.
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loss distributions and comonotonic portfolios [17, 28]. This is why, in the last years, ESα seems to be
preferred by regulators [3, 29], even if both measures have been heavily criticized by experts [23], for
their incapacity of dealing with the variability of losses in the tails.

Both VaRα and ESα are in fact unable to convey information on how losses are dispersed in the
tail. As shown in Figure 3, two loss distributions with very different tails may share the same value-
at-risk and the same expected shortfall. This is why a measure of dispersion of the losses in the tail,
beyond the VaRα level is needed. A measure that can be used to understand how reliable the ESα is.

However, given the stylized facts we have listed above, this measure cannot rely on variances or
higher moments, as some authors suggest [30] by assuming elliptically contoured loss distributions.
It must be a measure able to deal with the special features of the loss function, and of the right tail,
and not being biased by them. Our proposal is to look at the Gini index.

95% VaR 95% VaR

95% ES 95% ES

Loss Distribution 1 Loss Distribution 2

Same VaR

Same ES

Different tails!

Figure 2: In this example two loss distributions with same VaR0.95 and same ES0.95 are shown. However, the
structure of their tails is different meaning that we need an additional measure for the dispersion of the losses in
the tail to grasp this difference.

By construction, a higher Gini index indicates that more losses are present far in the right tail–
losses may play the role of the rich individuals in the distribution of wealth. A lower Gini, conversely,
indicates a distribution of losses which is more concentrated around the same values. Therefore, two
distributions sharing the same VaR and ES but different tails are likely to have different Gini indices.

However, the Gini index, in the formulation we have presented so far, is not optimal, as it takes
into account all values of the distribution of losses. What we need is a truncated Gini index, which
only measures dispersion above a certain threshold–the VaR, so that we can define a more precise
measure of tail risk and ES precision. The next section, and in particular Subsection 4.1 is devoted to
this.

9



4 The Concentration Profile

Despite being able of characterizing the distribution of losses, the Lorenz curve is not a viable tool in
risk management applications. This is due to the fact that L(x) does not provide a unique value, but
rather a continuum of information. Moreover, a graphical inspection of the Lorenz curve does not
allow the identification of any particular distribution [21].

Conversely, a concentration measure like the Gini index, while it contains important pieces of
information about the distribution it is derived from, which it summarizes in a single value between
0 and 1, is not sufficient to completely characterize the tail of a distribution, given that it relies on
the entire support of random variable Y. Moreover, and most importantly, notwithstanding the fact
that the Gini index G is obtained from L(x), there is no one-to-one mapping between them. The same
value of G can correspond to an infinte numbers of Lorenz curves [32].
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Figure 3: In the first graph the Lorenz curve L1(x) is shown, while in the second L2(x). The area shaded between
the Lpe and the two Lorenz curves is the same, delivering the same Gini index, however the asymmetry is clearly
different.

In Figure 3 two different Lorenz curves are shown. Their functional forms are

L1(x) = (2x− 1)1{x≥0.5}

for the one on the left, and
L2(x) = 0.5x

for that on the right.
Fixing x = 0.9, gives L1(x) = 0.8 and L2(x) = 0.45. This means that, according to L1, the top 10%

losses account for 20% of the total loss. These numbers change under L2, where the same top 10%
accounts for 55% of all losses! In both cases, the Gini index is the same: G1 = 1

2 = G2. Graphically
speaking, it is sufficient to notice that the two blue triangles in Figure 3 occupy the same area. This
simple example thus shows that the Gini index alone is not able to capture the dissimilarity between
the two loss distributions, despite their very different risk profiles.

The Gini index can be the basic ingredient of a more sophisticated tool, able to distinguish among

10



different risk profiles and distributions of losses. This tool is the Concentration Profile (CP), and it is
built on a sequence of truncated Gini indices.

The basic idea is to order all observations in the sample of losses. Then, recursively, we exclude
the points at the left-hand side, computing the Gini index for the remaining ones. In other words,
we truncate the distribution of losses at every single loss, from left to right, obtaining a collection of
exceedance distributions. For each of these, we compute the Gini index–the truncated Gini index with
respect to the original Y. We then study the behavior of the Gini index as a function of the truncation
level.

Before considering the mathematical details, we give an example, to show that this technique
makes sense. Let’s come back to the example of Figure 3. We truncate the original data at x = 0.5, i.e.
ignore the first 50% of the two samples. The new Lorenz curves are given in Figure 4.
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Figure 4: The rescaled versions of the Lorenz curves of Figure 3, where only the upper 50% of the domain is
considered. Notice how the shaded area is absent in the left side meaning that the Gini of L0.5

1 (x) is zero.

It is not difficult to prove that, analytically, the two curves are now L0.5
1 (x) = x and L0.5

2 (x) = 1
3 x

(they can be obtained using the equation (5) we introduce later on).
It is clear that the second situation is riskier than the first one, given the higher inequality shown.

This is also reflected by the new Gini indices, which now differ: G0.5
1 = 0 < G1 and G0.5

2 = 2
3 > G2.

This clearly denotes a different risk concentration in the tails.
In a concentration profile, we perform the same computation as above at every point of the sup-

port of the loss distribution. We get a sequence of truncated Gini indices, which is rather informative
about tail risk.

4.1 Mathematical construction

To rigorously define the concentration profile, we need some preliminary notation.

Definition 4. Consider a random variable Y ∈ R+ with distribution F(y), and a confidence level
α ∈ [0, 1). We call risk subclass at level α, the truncated support of F(y) defined as

Sα =
[

F−1(α),+∞
)
= [Q(α),+∞) .
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In risk management, if a VaRα is defined, we clearly have

Sα = [VaRα,+∞) .

As α ↗ 1, the left point of Sα approaches the right-end point of the distribution F(y), i.e. yF =

sup{y : F(y) < 1}.
For every α, let’s define the truncated Lorenz curve Lα(x), whose derivation is available in the

Appendix to this paper. In formula,

Lα(x) =
L(α + (1− α)x)− L(α)

1− L(α)
, 0 ≤ α, x ≤ 1, (5)

where L(·) is the original Lorenz curve.
Similarly, we can define the truncated distance index

DT
α =

∥∥Lα(x)− Lpe
∥∥

p∥∥Lpi − Lpe
∥∥

p

0 ≤ DT
α ≤ 1, (6)

and, setting p = 1 as before, the truncated Gini index

G(α) = 1− 2
ˆ 1

0
Lα(x)dx = 1− 2

ˆ 1

0

L(α + (1− α)x)− L(α)
1− L(α)

dx. (7)

In terms of VaRα and ESα, the previous equation can be stated as

G(α) =
E(|Y1 −Y2| | Y1 ∧Y2 > VaRα)

2ESα
.

The truncated Gini index is thus a measure of the “absolute” dispersion of the losses in the sub-
class Sα. High values of G(α) imply that the losses in a given subclass Sα are far apart, resulting in a
persistent thickness of the tail in the subclass.

Since the truncated Gini index derives from Lα(x), which depends on FVaRα(y), each truncated
Gini conveniently lies in the interval [0, 1]. It is therefore natural to read the Gini index as a probability.

Using Markov inequality, we obtain the following non trivial bound:

P(|Y1 −Y2| > 2ESα) ≤ G(α) ≤ 1. (8)

We now have all ingredients to define the concentration profile formally:

Definition 5. Given a sequence of risk subclasses {Sα}, α ∈ [0, 1), we call Concentration Profile (CP)
the sequence {G(α)}α∈[0,1), defined by equation (7).

Graphically speaking, a CP can be visualized by plotting G(α) against increasing values of α. The
concentration profile is therefore contained in the [0, 1]× [0, 1] square making it easy to interpret and
asses. Values close to 0 are points of minimum concentration (variability), while values close to 1 are
points of maximum concentration (variably). Through the observation of the behavior of its CP, we
can distinguish interesting features of the risk profile of the loss distribution under scrutiny.
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In Figure 5 the theoretical Concentration Profile for four main classes of loss distributions is shown:
Pareto, lognormal, Weibull and exponential (notice that an exponential is just a Weibull with shape
parameter γ = 1).

Figure 5 already gives us an useful fact, which we further analyse in the following subsection:
the Pareto distribution is the only distribution characterized by a constant, horizontal concentration
profile.
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Figure 5: Theoretical concentration profile

4.2 Characterization of the Concentration Profile

Looking at Figure 5, the first natural question to ask is whether the concentration profile uniquely
identifies a distribution. The answer is affirmative and is given by the following theorem, the proof
of which can be found in [26]:

Theorem 6. If G(α) is differentiable, then

Q(α) =
(1− α)G

′
(α)− G(α) + 1

(1− α)(1 + G(α))
exp{−

ˆ
(1− α)G

′
(α)− G(α) + 1

(1− α)(1 + G(α))
dα}, (9)

where G
′
(α) = dG(α)

dα and Q(α) is the quantile function of a general distribution.

A second question is whether different shapes of the CP define specific classes of distributions.
In order to answer this question we need to identify some limit distributions for light and fat tails.
A natural choice is to focus on the Generalized Pareto Distribution or GPD [9, 17]. This distribu-

tion is a well-known family used in extreme value statistics, and plays an important role in defining
the properties of tails. Formally, Z ≥ 0 follows a GPD if its distribution function H is such that
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H(z) =

1− (1 + ξz)−1/ξ ξ 6= 0

1− e−z ξ = 0
. (10)

This distribution can be shown to be the limit distribution of all distribution tails, provided that
we move sufficiently far on the right [9, 17], setting high thresholds in defining what the tail is. This
is known as the GPD approximation.

Here we focus on the case ξ ≥ 0, because when ξ < 0 we are mainly dealing with bounded
support distributions [17, 23]. A value of ξ > 0 usually indicates a fat tail. The higher ξ, the fatter.
For us, anyway, ξ needs to be smaller than 1, given that for ξ > 1 the mean of the GDP is not finite,
hence we cannot define the Gini index. The case ξ = 0 corresponds to thin tails, whose limit behavior
is that of an exponential.

We state the following result, whose proof is to be found in the Appendix.

Theorem 7. Consider the Generalized Pareto Distribution, its concentration profile is given by the following
formula:

G(α) =


ξ

2−(1−α)ξ (−2+ξ)(−1+ξ)−ξ
ξ ∈ (0, 1)

1
2−2 log(1−α)

ξ = 0
. (11)

for α ∈ [0, 1).

Looking at the two expressions in formula (35) we distinguish the following behavior, for every
α ∈ [0, 1]:

• For what concerns the light tail domain(ξ = 0), G(α) exhibits a decreasing behavior.

• For the fat-tailed domain(ξ > 0), as the shape parameter ξ grows to 1, the slope of the CP tends
to zero. This means that the fatter the tail, the more constant the CP. For a purely fat-tailed
distribution as the Pareto, and only for the Pareto, we get the horizontal line in Figure 5.

In case of a purely Pareto distribution, the GPD approximation is not an approximation, as there is
a perfect overlap for the entire support of the distribution. In this case, the ξ of the GPD corresponds
to 1/ρ of the Pareto distribution, following the definition of Table 1. Therefore, for ρ ↘ 1, we have
ξ ↗ 1, and the concentration profile translate towards 1, indicating maximum concentration for all
values of α. As we show in Table 3, the Pareto distribution is the only distribution whose Gini index
is immune to truncation, as it does not depend on any threshold value.

Conversely, if we look at Figure 5, the lognormal, the Weibull and the exponential distributions
show a decreasing CP. Can we extrapolate some characterizing behavior?

We analyze the behavior of the exponential distribution (equivalently the Weibull distribution
with shape parameter γ = 1), which is also a limiting case for the GPD approximation. Its theoretical
concentration profile is given in Table 3 (as an example of derivation, we show the full procedure in
the Appendix). Interestingly, it does not depend on any parameter. This means that all exponential
distributions share the same CP, no matter the value of their intensity. The exponential distribution
CP has a G(0) = 0.5, for α = 0, and it decreases towards zero first convexly and successively con-
cavely, with a point of flex at α = 0.63. Any empirical loss distribution whose G(0) is far away from
0.5 cannot be of the exponential type.
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Since the Weibull distribution is a generalization of the exponential, there is an interesting relation
between the two. Any Weibull distribution with shape parameter γ > 1 has a CP that always lies
below the CP of the exponential distribution without any intersection. For γ < 1, the Weibull distri-
bution CP lies above the exponential distribution CP. This behavior agrees with theoretical results
pointing out a phase transition in the Weibull distribution between γ < 1 and γ > 1 [21].

In terms of risk, when the underlying distribution is of the Weibull type, we can read the values
of γ < 1 as riskier than exponential. Vice versa for γ > 1.

Regarding the lognormal family, the CP has some relationship with the exponential distribution.
In particular when the lognormal distribution has a shape parameter σ < 1 (the standard devi-

ation of the normal distribution of the logs), its starting point is G(0) < 0.5. On the contrary, when
σ > 1, G(0) > 0.5.

Compared to the Weibull’s, the lognormal CP is always flatter, indicating that risks tend to de-
crease more slowly in the tail–consistent with extreme value theory, where the lognormal distribution
is considered riskier than the Weibull [23]. In order to find a lognormal CP that always lies below the
exponential CP, without any intersection, we need σ < 0.5. On the opposite side, in order to find a
lognormal CP which does not intersect the exponential CP from above, we have to raise the shape
parameter up to σ > 1.

We can derive some general principle to asses the riskiness of a distribution using the CP. This
issue will be discussed in the next Section, where we introduce the Concentration Map.

In Table 3 we provide the expression for the Concentration Profile for exponential, Weibull, Pareto
and lognormal distributions.

While theoretically the CP may exhibit any type of behavior, we have verified that for the most
used loss and size distributions (see [21] for a review), the behavior is always non-increasing. Ad-
ditionally, it is important to notice that the distributions discussed in this work are somehow repre-
sentative of many other useful size distributions. An example is given by the Gamma distribution,
whose behavior can be represented by a combination of the Weibull and the exponential distribution.

Distribution Concentration Profile G(α)

Weibull G(α) =
−2−

1
γ Γ(1+ 1

γ ,−2 log(1−α))−(−1+α)Γ(1+ 1
γ ,− log(1−α))

(1−α)Γ(1+ 1
γ ,− log(1−α))

Lognormal G(α) =
´ 1

α (−1+2x−α)e−
√

2σerfc−1
(2x)dx

(1−α)
´ 1

α e−
√

2σerfc−1
(2x)dx

Exponential G(α) = 1
2−2 log(1−α)

Pareto G(α) = 1
(2ρ−1) for ρ ∈ (1,+∞)

Table 3: Theoretical Concentration Profile for some of the most famous loss distributions, here Γ(·, ·) is the
incomplete Gamma function i.e. Γ(a, b) =

´ +∞
b e−xxa−1dx and erfc−1(x) is the complementary error function.

5 The Concentration Map

Given a concentration profile, a natural way to asses the risk encoded in a distribution is to look at its
behavior.
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However, as the Gini index provides a single value for the Lorenz curve, can we define something
similar for the concentration profile? Can we simplify the job of the risk manager by providing a
flexible tool that summarizes the information of interest: the riskiness of the loss distribution based
on its concentration structure?

The answer is provided by the so-called Concentration Map.

5.1 Risk Drivers

The first step for constructing a concentration map for the loss distribution, on the basis of its CP, is
to identify what we define the “risk drivers” of the concentration profile.

The first risk driver r1 is simple.

Definition 8. Given a Concentration Profile {G(α)}α∈[0,1), the first risk driver r1 ∈ [0, 1] is given by
the starting value: r1 = G(0).

The definition of r1 follows from the fact that, at least for unimodal size distributions, the concen-
tration profile is a non-increasing function of the truncation level. Therefore, given different CPs, we
expect the one with a higher starting value G(0) to be more risky.

For example, consider the CP of a Pareto distribution (Table 3). We know that it is a constant
function of the parameter ρ ∈ (1,+∞), i.e. G(α) = G(0) ∀α. Additionally, after an easy computation,
we obtain that dG(0)

dρ = − 2
(−1+2ρ)2 < 0, for every value of ρ ∈ (1,+∞). Therefore, the higher the

starting value of the CP, the lower the value of ρ, and the fatter and riskier the loss distribution.

Regarding the second risk driver r2, we state the following.

Definition 9. Given a concentration profile {G(α)}α∈[0,1), the second risk driver r2 ∈ [0, 1] is given
by the difference between the first risk driver r1 = G(0), and G(α) with α↗ 1. Namely:

r2 = lim
α→1
|G(0)− G(α)| .

From Theorem 7 we know that, for light-tailed distributions, the CP converges to zero as α ↗ 1.
This is because, as we move towards the right endpoint of the domain, the number of observations in
the far right tail decreases, since the mass under the tail of the p.d.f. must converge to zero, in order
to ensure the existence of the moments. This does not necessarily happen when the loss distribution
is fat-tailed.

For this reason, measuring the gap between the initial and final value of the CP is another quan-
titative way of assessing the fatness of the tail. In particular, the smaller the gap, the larger the mass
present in the tail, and the higher the probability of experiencing extreme losses.

In Fig 6, we show a graphical representation of r1 and r2.
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Figure 6: Risk drivers visualization with respect to a generic concentration profile

5.2 The Map

Once we have identified the main risk drivers, we need a way of combining them to rank different
concentration profiles on the basis of the embedded risk.

We need a risk function R(r1, r2) : [0, 1]× [0, 1] → [0, 1] which assigns to the combination of the
risk drivers of the concentration profile a number–w.l.o.g. in [0, 1]–representing the risk level of the
profile itself.

Trivially, this risk function must satisfy the constraints given in equations (12) and (13):

dR(r1, r2)

dr1
> 0, (12)

and
dR(r1, r2)

dr2
< 0. (13)

We denote by Γ the set of all functions R(x, y) : [0, 1]× [0, 1] → [0, 1] that respect the constraints
in (12) and (13). Therefore, any function in this set is a candidate to assess the risk given by the CP.

If we additionally impose the constraint of a non-increasing concentration profile ( dG(α)
dα ≤ 0),

which is the case for many unimodal distributions used in risk management, we can reduce the set
Γ to contain functions whose domain is the R2 simplex with vertices [0, 0], [1, 1], [1, 0]. This happens
since, with a non-increasing concentration profile, r2 ≤ r1.

Looking for a suitable risk function, we can rely on some well-known results from utility and risk
theory. For example, we can choose a Cobb-Douglas risk function like

R(r1, r2) = ra
1(1− r2)

b a, b ∈ R+. (14)

In this function we can decide which risk driver is more relevant for risk managers, by acting on
the parameters a and b. The values of these parameters can be based on historical data or expert
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judgements. This allows for flexibility.
The choice of a Cobb-Douglas risk function can be motivated by the convenient properties that this
function has in terms of risk-driver substitution, and the possibility of deriving isorisk curves that
are easy to interpret [1, 10]. Naturally, other functions can be used, and it would be interesting to
compare their actual performances.

Figure 7: Concentration map with underlying Cobb-Douglas risk function of parameters a = 0.5, b = 0.5. The
different points represent the theoretical concentration profiles of useful distribution in risk management: Pareto,
Exponential, Weibull and lognormal. α = 0.99 has been taken as empirical limit value for limα→1 G(α)

Figure 7 shows an example of the Concentration Map based on the Cobb-Douglas risk function. The
map reads as following: warmer is the area where the points are scattered higher is the risk attached
to the loss function. On the y-axis we can read the values of the first risk driver r1, while on the x-axis
the values of limα→1 G(α) are given (in the picture, we choose α = 0.99 to allow for a few observations
in the tail). The second risk driver r2 is then computed as the absolute gap, and inputed in the risk
function.

The risk function,
R(r1, r2) = r0.5

1 (1− r2)
0.5

then induces an ordering on the concentration map. Clearly, different combination of values for the
risk drivers can lead to the same output of the risk function. These are represented by the isorisk
curves in the graph.

In Figure 8 we show how the concentration map of Figure 7 changes if, for example, different
values of a and b are taken in consideration in equation 14.
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Figure 8: Concentration map, with underlying Cobb-Douglas risk function of parameters a = 0.2, b = 0.8.
The different points represent the theoretical concentration profiles of useful distribution in risk management:
Pareto, Exponential, Weibull and lognormal. α = 0.99 has been taken as empirical limit value for limα→1 G(α)

5.3 Notable behavior on the map

For some common distributions, the concentration map provides an interesting interpretation.
The Pareto distribution with shape parameter ρ ∈ (1, ∞) places itself on the hypothenuse of the

Concentration Map. In particular Pareto(ρ↘ 1) corresponds to the point (1, 1), while Pareto(ρ↗ +∞)

tends to (0, 0).
This is due the fact that the concentration profile associated to the Pareto distribution is constant.

So that the second risk driver becomes r2 = 0 (since G(0) = limα→1 G(α)), and the x−axis values for
the Concentration Map are the same of those on the y−axis.

Given the fix concentration profile, ∀λ ∈ R+, all exponential distributions lie in the cell ( 1
2−2 log(1−α)

, 1
2 ),

which we can indicate as the exponential cell. The x−coordinate naturally depends on the chosen
level of α. If for example α = 0.99, the coordinates for the exponential become: (0.09, 0.5).

Based on these two facts we can draw the conclusion that any color on the map that is equal to
the one placed on the exponential cell or on the Pareto segment will share the same risk, due to the
isorisk property of the Cobb-Douglas risk function [10].

For example, the points placed on the hypothenuse, from (0.33, 0.33) (what we call the transition
cells in Figures 7 and 8) to (1, 1), correspond to Pareto distributions with α ∈ (1, 2], whose variance is
not finite. Therefore given a certain risk function, the areas of the map with the same color will share
the same risk as that of a Pareto distribution with infinite variance.
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6 Concentration Adjusted Expected Shortfall

As any measure of variability, the Gini index provides information about the ability of the mean to
actually predict, to some degree, the outcome of a random variable: the so-called mean’s precision.
Recall also that, when dealing with truncated distributions in risk management, the truncated mean
is the Expected Shortfall. The Gini index, when computed at a truncation level α, thus provides the
precision of the ESα computed on the risk subclass Sα.

In general, we expect the Expected Shortfall to depend on the truncation level. For example, it
is known that for a Pareto distribution, the quantity ES − u (also known as mean excess) increases
linearly in the truncation level u, according to van der Wijk’s law [7].

As we did for the truncated Gini index, we could compute the Expected Shortfall ESα for all
subclasses Sα, obtaining another “profile". However, this graph would show a trivial behavior, being
ESα an increasing function of α. And this is a pity, because the speed of growth certainly varies from
distribution to distribution, and a faster growth is an indicator of a more risky loss function.

A natural solution is to weight ESα by the corresponding Gα.
Recall that the truncated Gini index belongs to the interval [0, 1], and, for α↗ 1, it tends to zero for

low risk light-tailed distributions. This indicates that for light tails the variability decreases quickly,
while it is much more persistent for fat tails.

A natural question therefore arises: is the increase in the Expected Shortfall ruled out by an in-
crease in its (Gini) precision? A high ESα is not a problem per se, if it also becomes more and more
precise and, in the limit for truncation level α↗ 1, it becomes the certain loss.

The Concentration Adjusted Expected Shortfall, or CAESα, can be used in this framework.

Definition 10. Given a concentration profile {G(α)}α∈[0,1), and a sequence of expected shortfalls
{ESα}α∈[0,1), the concentration adjusted expected shortfall is defined as

CAESα = {ESα · G(α)}α∈[0,1).

The CAESα adjusts the ESα for the variability of each subclass Sα where it is computed. Differently
from the simple ESα sequence, which is trivially increasing for every distribution, the CAESα exhibits
very different behavior according to different distributions. This allows us to better characterize the
loss distribution.

We can distinguish three main types of behavior:

lim
α→1

CAESα = ∞, (15)

lim
α→1

CAESα = c, (16)

and
lim
α→1

CAESα = 0, (17)

with c ∈ R.
The first case, equation (15), indicates that the increase in the Expected Shortfall is too large and
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rapidly to be compensated by a decrease in the variability, or that the variability does not decrease
fast enough. This behavior corresponds to the Pareto distribution with any value of ρ ∈ (1,+∞), the
Weibull distribution with γ < 1 and lognormal distribution with σ ≥ 0.3.

In the second and third cases instead, in equations (16) and (17), the decrease in the variability
is sufficient to compensate for an increase of the ESα. The value of the ESα thus becomes more and
more representative for the losses as α↗ 1. The case represented by equation (16) only occurs for the
exponential distribution, i.e. Weibull distribution with γ = 1; while that of equation (17) manifests
itself for Weibull distributions with γ > 1 and lognormal distribution with σ < 0.3.

Finally, a remark is to be made for the specific case of lognormal distributions. Figure 10 shows
how the lognormal CAESα changes with σ. We can see that, for σ ∈ (0.3, 0.7), it exhibits a u-shaped
behavior. This feature can be used in practice to identify whether the loss function is lognormal rather
than Weibull or exponential.

The combination CP/CAES can thus be used to better discriminate among Weibull and lognormal
distributions, also grasping the possible value of their shape parameter, by only looking at a limited
number of graphs.

Figure 9 presents the general behavior of the CAESα for the distributions presented in this work:
Pareto, lognormal, Weibull and exponential distributions. For the lognormal only, further details are
provided in Figure 10.

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

   

   

   

   

   

   

   

   

   

   

   

α

CA
ES

(s
ca

le
 is

 n
ot

 r
ep

re
se

nt
at

iv
e)

Lognormal, Pareto, Weibull γ<1

Exponential 

Weibull γ>1

Concentration-Adjusted ES
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7 Empirical Analysis

In this section we present some examples of the use of the tools introduced in this work.
In the first example we generate a data set from known distributions and we show how the con-

centration profile can be used in the identification of a parametric model.
In the second set of examples we use two well-known real data sets (freely available in the R package
“evir” ) as a basis for our analysis.

Finally, in Subsection 7.3, we show how the Concentration Profile finds application also in the
field of Extreme Value Theory, when one is interested in defining the threshold above which fat-tails
may manifest themselves.

7.1 Lognormal or Pareto distribution?

We generate a sample of size n = 500 from a lognormal distribution with parameters µ = 0 and
σ = 1 (finite mean, finite variance) and from a Pareto distribution with ρ = 1.5 (finite mean but
infinite variance).
In Figure 11 the histograms are shown.
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Figure 11: On the left side the histogram of a lognormal distributed data set with µ = 0 and σ = 1. On the right
side the histogram of a Pareto distributed dataset with ρ = 1.5.

Our aim is to show via the Concentration Profile that it is possible to fit the correct distribution. To
do so we use the empirical version of the Concentration Profile presented in Section 4.

In order to estimate the CP, it is important to notice that the CP is basically a sequence of Gini
indices computed on a decreasing number of ordered observations. Therefore, under normal circum-
stances, no additional effort must be done to estimate it with respect to the classical estimation of the
Gini index, since no bias arises from the truncation procedure. This is because the left point of the
domain where the truncation occurs can be successfully estimated with the empirical quantile q̂i:n.

The estimation of the Concentration Profile (CP) can be performed using any existing estimator
for the Gini index Ĝ(i : n), with n being the total number of observations, and i ∈ [1, n− 1] being the
number of data points to be taken into account in the estimation [32]. For example, one could use

Ĝ =
∑n

i=1 ∑n
j=1
∣∣xi − xj

∣∣
2n ∑n

i=1 xi
. (18)

After ordering the observations from the smallest to the largest, we obtain the CP by computing i
times the Gini estimate, each time excluding the first i smallest observations.

Naturally, to get accurate estimates, it is important to leave a sufficient number of observations
in the right tail. We define this number by k. The number of ordered observations to spare from the
estimation cycle depends on the data generating process of the data set. In particular the fatter the
tails, the more observations should be left outside the estimation cycle. Borrowing heuristics from
extreme value theory [9, 17], we can set k between 1% and 5% of the original ordered data points.

When estimating the Gini index, attention must be paid to consistent estimates. According to
[18], the estimator in equation (18) (but also several others) is consistent and asymptotically normal
if and only if the second moment of the data generating process is finite. As already stressed out, this
assumption can be too stringent in risk management, especially when dealing with Paretian tails.

In order to overcome this problem we propose the following solution.
Recall from Table 2 that the Gini index for the Pareto distribution is a continuous function of the

shape parameter ρ. Estimators for the shape parameter of the Pareto distribution exist and do not
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require any assumption on the finiteness of the second moment [17]. Therefore when we suspect an
infinite variance, an estimator for the Gini index (and for the Concentration Profile) can be derived from
the tail parameter ρ, by a plugging the estimated ρ̂ into the theoretical expression of the Gini. The
resulting estimator thus becomes:

Ĝ =
1

2ρ̂− 1
. (19)

To obtain ρ̂, one can use the maximum likelihood estimator or any other technique [17].
Confidence interval for the CP can be easily computed using resampling techniques like bootstrap,

jackknife or k-jackknife[11, 12].
In Figure 12, a simple decision tree summarizes the previous considerations regarding the Gini

estimation.

Check your data

Do you suspect the 
theoretical variance 

to be infinite?

YES NO

Estimate the Gini via 
the tail parameter of 

the Pareto

Use the Gini 
estimator you prefer

Figure 12: Decision tree for Gini index estimator

Figure 13 shows the results of experiments on simulated data. In both cases we can clearly observe
that the theoretical concentration profile is contained in the 95% confidence interval obtained via
bootstrapping the empirical CP. Both for the lognormal and the Pareto distributions, the parameters
have been estimated via maximum likelihood estimator.

Therefore, exploiting Theorem 6, we can conclude that the samples are lognormal and Pareto, as
expected.
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Figure 13: Empirical Concentration profile (black) with 95% bootstrapped confidence intervals (red) compared
to the theoretical concentration profile (blue)

7.2 Real data study

Both data set we are going to use are freely available in the evir package of the R statistical language.
The first data set (name: danish) contains 2167 Danish fire insurance claims. The second one

presents 2769 daily log losses on the BMW share price (name: BMW).
These very well-known data sets have been used as training data in many papers and books, e.g.

[9, 17, 23]. In particular the first data set is a typical example of Pareto distribution with parameter ρ

estimated to be smaller than ρ = 2 and bigger than ρ = 1, so that the distribution has finite mean but
infinite variance.

The second data set is an example of lognormally distributed losses.
The empirical loss functions of the data are shown in Fig 14 as histograms.
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Figure 14: Empirical loss distributions shown in histogram form

Using the methodology explained above for obtaining the empirical concentration profile, we
derive the CPs of the data sets, collecting them in Figure 15 together with their bootstrapped 95% and
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Figure 15: Empirical Concentration Profiles with attached 95% and 99% bootstrapped confidence intervals. In
the left graph the empirical CP of the Danish insurance claims. In the right graph the CP for the BMW share
log-losses.

In Figure 15 we notice the following patterns: the CP relative to the fire insurance claim data
is almost constant. Recalling the characterization of the Pareto CP provided in Section 4, we can
conclude that the data are Pareto distributed.

An additional check to the Paretianity of the data set can be done through the CAESα. In fact, if
this is the case, we expect again a diverging CAESα. The expected result is presented in Figure 16.

For the BMW log-losses, we notice that the empirical CP has the following characteristics: it starts
around the point 0.5, it decreases quite rapidly towards zero, and exhibits a change in the slope being
slightly convex at the beginning and ending up concave.

By the results presented in Section 4, we can exclude the Pareto distribution since the CP is not
constant. But what about the other three cases: Weibull, lognormal and exponential distributions?

Since the starting point of the empirical CP is around G(0) = 0.5, and recalling the fact that the
only Weibull distribution starting at this point coincides with the exponential, we can exclude Weibull
with parameters γ 6= 1 from the set of candidates. What is left to choose is either the exponential
distribution or the lognormal distribution with shape parameter σ ' 1.

In order to discriminate between these two options we can use the CAESα.
Recall that the shape of the CAESα for these two distributions is different. In particular for the

exponential distribution it shows a constant behavior. For the lognormal distribution instead, the
CAESα exhibits the more complex behaviors of Figure 10.

The empirical behavior of the CAESα: if it is constant it means that the data are exponentially
distributed, otherwise the lognormal is probably the right candidate.

The results are shown in Figure 16. We can see how the CAESα diverges. This suggests the
possibility of lognormally distributed data.

In order to double check this hypothesis, we fit a lognormal distribution to the data, using a
method of moments estimator for its shape parameters. For σ we get σ = 0.88 (with a s.e. of 0.0065).
We then use this value to generate a theoretical lognormal CP, and we compare it with the empirical
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one.
The results of this fitting procedure are given in Figures 15 and 17, showing a close fit between

data and the lognormal CP.
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Figure 17: Lognormal fit (blue line) plotted against the histogram of the empirical data.

Clearly Pareto-like data are much riskier than light-tailed ones. However, comparing the VaRα

and the ESα of the two data sets is useless since they measure different phenomena with different
scales. Additionally, as stated before, VaRα and ESα alone are not very indicative for the potential
losses since they do not provide information about the dispersion.

Computing the truncated Gini index G(α) appears to be a solution for both problems. It provides
information about the precision of the ESα and the length of the tail after VaRα. Moreover, being a
scale free measure, it can be used to compare completely different phenomena.
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Table 4 compares the VaRα, the ESα and the G(α) with α ∈ {0.9, 0.95, 0.99} for both data sets. The
first data set, the one about Danish losses, is riskier, because of the higher tail dispersion.

Danish BMW
α VaRα ESα G(α) VaRα ESα G(α)

0.9 3.979 11.078 0.45 0.021 0.034 0.203
0.95 4.826 13.591 0.449 0.027 0.043 0.179
0.99 5.940 17.081 0.443 0.042 0.062 0.16

Table 4: Comparison of the main risk measures for both the datasets

In Figure 18, we show a comparison based on a concentration map. Once again, the Danish fire
claims are confirmed to be riskier.

Figure 18: Risk evaluation carried via the risk concentration map. Cobb-Douglas parameters: a = 0.3, b = 0.7 .

7.3 Extreme Value Theory Application

In the context of extreme value theory, one of the most important issues involves the estimation of
the threshold above which the possible Paretian tail starts. This has applications in the estimators of
the tail index, the tail quantile and many other relevant quantities [9, 17].

So far no unique methodology has been developed to estimate the right threshold. However,
many different tools are used to provide hints about the best value, see for example [7].

Here we propose the use of the Concentration Profile.
We know that the concentration profile is the sequence of truncated Gini indices computed at an

increasing truncation level, progressively discharging the previous observations.
Therefore, recalling the characterization of the Pareto concentration profile (Section 4), we would

expect that if the data exhibit a Paretian right tail, then from a certain α-level onward the CP should
be constant.

An example performed on simulated data will clarify this idea.

28



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration Profile Mixture Distribution

α

C
P

(α
)

0 0.25 0.5 0.75 1

Emp CP

Tail CP

Tail thershold

1e−04 1e−02 1e+00 1e+02

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

Empricial Survival function on log−log scale

x (on log scale)

1 
−

 F
(x

) 
(o

n 
lo

g 
sc

al
e)

Tail thershold

Figure 19: On the left hand side the concentration profile of the mixture distribution is shown. A dashed red line
has been plotted to ease the reading to the plot and to better underline the constant behavior of the concentration
profile at the tail level. On the right hand side a log-log is produced, where any Pareto-like behavior appears as
a straight line with slope the tail of Pareto.

In Figure 19, at the left-hand side, the concentration profile of the following mixture is plotted:

Ymix = βY + (1− β)Z, (20)

where Y is a standard exponential distribution, Z is a Pareto distribution with ρ = 1.5, and the
mixing parameter is β = 0.85.

It is therefore clear that by construction this dataset exhibits Paretian tails. In particular according
to our methodology the Paretian behavior starts around the quantile Q(0.825) = 3.57 (denoted by a
blue cross in Figure 19).

To asses the goodness of our findings we can compare our methodology with other techniques
used in EVT to detect the tail threshold (see [7, 17] for a review). On the right-hand side of figure 19,
we report the empirical survival function S(x) = 1− F(x) plotted in a log-log scale [7]. From this
plot we can see how the straight line behavior which characterizes the Paretian tail is present from
approximately the same level identified via the concentration profile.

8 Conclusions

In this work we have introduced a novel approach to risk management, based on the study of con-
centration measures of the loss distribution.

In particular we have shown that a truncated sequence of the Gini indices–the concentration
profile–represents an accurate way of assessing the variability of the larger losses, the precision of
common risk management measures like the Expected Shortfall, and tail risk in general.

Combining concentration profiles and standard results from utility and risk theory, we have de-
veloped a Concentration Map, which can be used to assess the risk attached to potential losses on the
basis of the risk profile of a risk manager.
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Finally, we have used the sequence of truncated Gini indices as weights for the expected shortfall
defining the so-called Concentration Adjusted Expected Shortfall, a measure able to capture interesting
additional features of tail risk.

Using simulated and empirical data, we have shown how to use our methods in practice, from
risk management to extreme value theory.

It is worth stressing that concentration profiles and maps could also be obtained by substituting
the Gini index with other measures of concentration, like the Pietra index [27]. However, preliminary
studies made us notice that the increase in the mathematical complexity is not compensated by an
improvement in the applicability. Using an Occam’s razor principle, we therefore prefer the simpler
(and better known) Gini index.
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Appendix

Derivation for truncated Lorenz curve

In order to derive the Lorenz curve for truncated random variables, i.e. equation (5), recall that the
truncated p.d.f. of a random variable X truncated on [a, b] is given by:

f T(x) =
f (x)

F(b)− F(a)
, (21)

where f (x) is the original p.d.f. of X.
In our case we focus only on left-truncated random variables so that equation (21) simplifies as

f T(x) =
f (x)

1− F(a)
.

Let’s define the Cumulative Mean Function M(t) for the truncated random variable, i.e.

M(t) :=

´ t
a

x f (x)
1−F(a)dx

´ +∞
a

x f (x)
1−F(a)dx

, (22)

with t ∈ [a,+∞), which becomes

M(t) :=

´ t
a x f (x)dx´ +∞

a x f (x)dx
.

Note that the Lorenz curve is related to the Cumulative Mean Function via a change of variable
t = F−1(x). Applying this change of variable to equation (22), we get the Lorenz curve associated to
the truncated random variable XT on [a,+∞],

L∗α(x) =
´ x

α F−1(u)du´ 1
α F−1(u)du

, (23)

where α is the confidence level associated to truncation in a, i.e. F(a) = α. The curve Lα(x) is
therefore defined on the risk subclass Sα.

Now, set z = x−α
1−α , and plug it in equation (23), so that

Lα(z) = L∗α(z(1− α) + α). (24)

It is straightforward to notice that equation (24) can be re-written as

Lα(z) = L∗α(z(1− α) + α) =

´ z(1−α)+α
α F−1(u)du´ 1

α F−1(u)du
. (25)

Recalling that the Lorenz curve associated by a random variable with domain in R+ is given by
equation (1), we can adjust the right-hand side of equation (25) so that

32



Lα(z) =
´ z(1−α)+α

α F−1(u)du´ 1
α F−1(u)du

=

´ z(1−α)+α
0 F−1(u)du−

´ α
0 F−1(u)du´ 1

0 F−1(u)du−
´ α

0 F−1(u)du
(26)

Now, by dividing the right-hand side by
´ 1

0 F−1(u)du´ 1
0 F−1(u)du

, and by recalling that L(α) =
´ α

0 F−1(u)du´ 1
0 F−1(u)du

and

that L(1) = 1, we finally obtain

Lα(z) =
L(z(1− α) + α)− L(α)

1− L(α)
. (27)

Derivation for the Exponential distribution Concentration Profile

We here provide the derivation of the CP for the exponential distribution, for convenience. The
derivation of the CP for others distributions only involves the computation of some more cumber-
some integrals. For example for the lognormal distribution the actually-usable solution can only be
obtained numerically.

Our aim is to use formula (7) to obtain a workable form for the CP.
Recalling Table 2, the Lorenz curve for the exponential distribution is given by:

L(x) = x + x(− log(1− x)) + log(1− x).

In order to get its truncated version, we exploit formula (5), so that

Lα(x) =
α + (1− α)x + (α + (1− α)x)(− log(1− (α + (1− α)x)) + log(1− (α + (1− α)x))− (α + α(− log(1− α)) + log(1− α))

1− (α + α(− log(1− α)) + log(1− α))
,

(28)

with α ∈ [0, 1].
After some algebra we get

Lα(x) =
−x + log(1− α) + (−1 + x) log((−1 + x)(−1 + α))

−1 + log(1− α)
. (29)

We can now exploit equation (29) in formula (7), and we get

G(α) = 1− 2
ˆ 1

0

−x + log(1− α) + (−1 + x) log((−1 + x)(−1 + α))

−1 + log(1− α)
dx. (30)

The integral in (30) can be solved directly, thus getting the formula provided in Table 3.

Proof of Theorem 7

The quantile function of a GPD is given by

F−1(u) =
(1− u)−ξ − 1

ξ
. (31)

From this, using equation (1), we get
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L(x) =

´ x
0

(1−u)−ξ−1
ξ du

´ 1
0

(1−u)−ξ−1
ξ du

. (32)

Solving (32), we obtain

L(x) =
1− (1− x)(1−ξ) − x + ξx

ξ
, (33)

which is the closed form solution for the Lorenz curve of the GPD.
We now obtain the truncated Lorenz curve by evaluating (33) in α + (1− α)x, that is

Lα(x) =
−(1− α)ξ((α− 1)(x− 1))−ξ + x(1− α)ξ

(
((α− 1)(x− 1))−ξ + ξ − 1

)
+ 1

ξ(1− α)ξ − (1− α)ξ + 1
. (34)

Using equations (7) and (34), we then observe

G(α) = 1− 2
ˆ 1

0

−(1− α)ξ((α− 1)(x− 1))−ξ + x(1− α)ξ
(
((α− 1)(x− 1))−ξ + ξ − 1

)
+ 1

ξ(1− α)ξ − (1− α)ξ + 1
dx,

from which we derive

G(α) =
ξ

2− (1− α)ξ(−2 + ξ)(−1 + ξ)− ξ
. (35)

In order to prove that, in the case of a light-tailed distribution, the CP is always decreasing, we
have to show that dG(α)

dα < 0 for every α ∈ [0, 1). We easily observe

dG(α)

dα
=

1
2(α− 1)(log(1− α)− 1)2 , (36)

which is always negative.
What is left to show is that the CP of a fat-tailed distribution gets flatter as ξ ↗ 1, with limiting

case the constant.
Also in this case it is sufficient to show that: d( dG(α)

dα )
dξ < 0 and limξ→1

dG(α)
dα = 0.

dG(α)

dα
= − (ξ − 1)ξ2(1− α)ξ−1

(ξ − 2)
(
(ξ − 1)(1− α)ξ + 1

)2 , (37)

whose limit for ξ → 1 goes to 0.
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