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a b s t r a c t

We study the problems related to the estimation of the Gini index in presence of a fat-
tailed data generating process, i.e. one in the stable distribution class with finite mean
but infinite variance (i.e. with tail index α ∈ (1, 2)). We show that, in such a case, the
Gini coefficient cannot be reliably estimated using conventional nonparametric methods,
because of a downward bias that emerges under fat tails. This has important implications
for the ongoing discussion about economic inequality.

We start by discussing how the nonparametric estimator of the Gini index undergoes
a phase transition in the symmetry structure of its asymptotic distribution, as the data
distribution shifts from the domain of attraction of a light-tailed distribution to that of a fat-
tailed one, especially in the case of infinite variance. We also show how the nonparametric
Gini bias increases with lower values of α. We then prove that maximum likelihood
estimation outperforms nonparametric methods, requiring a much smaller sample size to
reach efficiency.

Finally, for fat-tailed data, we provide a simple correction mechanism to the small
sample bias of the nonparametric estimator based on the distance between the mode and
the mean of its asymptotic distribution.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Wealth inequality studies represent a field of economics, statistics and econophysics exposed to fat-tailed data generating
processes, often with infinite variance [1,2]. This is not at all surprising if we recall that the prototype of fat-tailed
distributions, the Pareto, has been proposed for the first time to model household incomes [3]. However, the fat-tailedness
of data can be problematic in the context of wealth studies, as the property of efficiency (and, partially, consistency) does
not necessarily hold for many estimators of inequality and concentration [2,4].
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The scope of this work is to show how fat tails affect the estimation of one of the most celebrated measures of economic
inequality, the Gini index [5–7], often used (and abused) in the econophysics and economics literature as the main tool for
describing the distribution and the concentration of wealth around the world [1,8,9].

The literature concerning the estimation of the Gini index is wide and comprehensive (e.g. [5,7] for a review), however,
strangely enough, almost no attention has been paid to its behavior in presence of fat tails, and this is curious if we consider
that: 1) fat tails are ubiquitous in the empirical distributions of income and wealth [2,9], and 2) the Gini index itself can be
seen as a measure of variability and fat-tailedness [10–13].

The standard method for the estimation of the Gini index is nonparametric: one computes the index from the empirical
distribution of the available data using Eq. (5) below. But, as we show in this paper, this estimator suffers from a downward
bias when we deal with fat-tailed observations. Therefore our goal is to close this gap by deriving the limiting distribution
of the nonparametric Gini estimator in presence of fat tails, and propose possible strategies to reduce the bias. We show
how themaximum likelihood approach, despite the risk of model misspecification, needs much fewer observations to reach
efficiency when compared to a nonparametric one.1

Our results are relevant to the discussion about wealth inequality, recently rekindled by Thomas Piketty in [9,15], as the
estimation of the Gini index under fat tails and infinite variance may cause several economic analyses to be unreliable, if not
markedly wrong. Why should one trust a biased estimator?

By fat-tailed data we indicate those observations generated by a positive random variable X with cumulative distribution
function (c.d.f.) F (x), which is regularly-varying of order α [16], that is, for F̄ (x) := 1 − F (x), one has

lim
x→∞

xα F̄ (x) = L(x), (1)

where L(x) is a slowly-varying function such that limx→∞
L(cx)
L(x) = 1 with c > 0, and where α > 0 is called the tail exponent.

Regularly-varyingdistributions define a large class of randomvariableswhoseproperties have been extensively studied in
the context of extreme value theory [4,17], when dealing with the probabilistic behavior of maxima andminima. As pointed
out in [18], regularly-varying and fat-tailed are indeed synonyms. It is known that, if X1, . . . , Xn are i.i.d. observations with
a c.d.f. F (x) in the regularly-varying class, as defined in Eq. (1), then their data generating process falls into the maximum
domain of attraction of a Fréchet distribution with parameter ρ, in symbols X ∈ MDA(Φ(ρ))[17]. This means that, for the
partial maximumMn = max(X1, . . ., Xn), one has

P
(
a−1
n (Mn − bn) ≤ x

) d
→ Φ(ρ) = e−x−ρ

, ρ > 0, (2)

with an > 0 and bn ∈ R two normalizing constants. Clearly, the connection between the regularly-varying coefficient α and
the Fréchet distribution parameter ρ is given by: α =

1
ρ
[4].

The Fréchet distribution is one of the limiting distributions formaxima in extreme value theory, togetherwith theGumbel
and the Weibull; it represents the fat-tailed and unbounded limiting case [17]. The relationship between regularly-varying
random variables and the Fréchet class thus allows us to deal with a very large family of random variables (and empirical
data), and allows us to show how the Gini index is highly influenced by maxima, i.e. extreme wealth, as clearly suggested
by intuition [2,13], especially under infinite variance. Again, this recommends some caution when discussing economic
inequality under fat tails.

It is worth remembering that the existence (finiteness) of themoments for a fat-tailed random variable X depends on the
tail exponent α, in fact

E(X δ) < ∞ if δ ≤ α,

E(X δ) = ∞ if δ > α. (3)

In this work, we restrict our focus on data generating processes with finite mean and infinite variance, therefore, according
to Eq. (3), on the class of regularly-varying distributions with tail index α ∈ (1, 2).

Table 1 and Fig. 1 present numerically and graphically our story, already suggesting its conclusion, on the basis of artificial
observations sampled from a Pareto distribution (Eq. (13) below) with tail parameter α equal to 1.1.

Table 1 compares the nonparametric Gini index of Eq. (5) with the maximum likelihood (ML) tail-based one of Section 3.
For the different sample sizes in Table 1, we have generated 108 samples, averaging the estimators via Monte Carlo. As the
first column shows, the convergence of the nonparametric estimator to the true Gini value (g = 0.8333) is extremely slow
and monotonically increasing; this suggests an issue not only in the tail structure of the distribution of the nonparametric
estimator but also in its symmetry.

Fig. 1 provides some numerical evidence that the limiting distribution of the nonparametric Gini index loses its properties
of normality and symmetry [19], shifting towards a skewed and fatter-tailed limit, when data are characterized by an
infinite variance. As we prove in Section 2, when the data generating process is in the domain of attraction of a fat-tailed
distribution, the asymptotic distribution of the Gini index becomes a skewed-to-the-right α-stable law. This change of
behavior is responsible of the downward bias of the nonparametric Gini under fat tails. However, the knowledge of the new
limit allows us to propose a correction for the nonparametric estimator, improving its quality, and thus reducing the risk of
badly estimating wealth inequality, with all the possible consequences in terms of economic and social policies [2,9,15].

1 A similar bias also affects the nonparametricmeasurement of quantile contributions, i.e. those of the type ‘‘the top 1% owns x% of the total wealth’’ [14].
This paper extends the problem to the more widespread Gini coefficient, and goes deeper by making links with the limit theorems.
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Fig. 1. Histograms for the Gini nonparametric estimators for two Paretian (type I) distributions with different tail indices, with finite and infinite variance
(plots have been centered to ease comparison). Sample size: 103 . Number of samples: 102 for each distribution.

Table 1
Comparison of the Nonparametric (NonPar) and the Maximum Likelihood
(ML) Gini estimators, using Paretian data with tail α = 1.1 (finite mean,
infinite variance) and different sample sizes. Number of Monte Carlo simula-
tions: 108 . The Error Ratio in the last column is defined as ratio of the mean
absolute deviation of the nonparametric estimator over that of themaximum
likelihood one.

n (number of obs.) Nonpar ML Error ratio

Mean Bias Mean Bias

103 0.711 −0.122 0.8333 0 1.4
104 0.750 −0.083 0.8333 0 3
105 0.775 −0.058 0.8333 0 6.6
106 0.790 −0.043 0.8333 0 156
107 0.802 −0.031 0.8333 0 105

+

The rest of the paper is organized as follows: in Section 2 we derive the asymptotic distribution of the sample Gini index
when data possess an infinite variance; in Section 3we deal with themaximum likelihood estimator; in Section 4we provide
an illustration with Paretian observations; in Section 5 we propose a simple correction based on the mode–mean distance
of the asymptotic distribution of the nonparametric estimator, to take care of its small-sample bias; finally, Section 6 closes
the paper. To ease readability, Appendix contains the longer proofs of the main results in the work.

2. Asymptotics of the nonparametric estimator under infinite variance

We now derive the asymptotic distribution for the nonparametric estimator of the Gini index when the data generating
process is fat-tailed with finite mean but infinite variance.

The so-called stochastic representation of the Gini g is

g =
1
2
E
(
|X ′

− X ′′
|
)

µ
∈ [0, 1], (4)

where X ′ and X ′′ are i.i.d. copies of a random variable X with c.d.f. F (x) ∈ [c, ∞), c > 0, and with finite mean E(X) = µ. The
quantity E

(
|X ′

− X ′′
|
)
is known as the ‘‘Gini Mean Difference’’ (GMD) [7]. For later convenience we also define g =

θ
µ
with

θ =
E(|X ′

−X ′′
|)

2 .
The Gini index of a random variable X is thus the mean expected deviation between any two independent realizations of

X , scaled by twice the mean [20].
The most common nonparametric estimator of the Gini index for a sample X1, . . . , Xn is defined as

GNP (Xn) =

∑
1≤i<j≤n|Xi − Xj|

(n − 1)
∑n

i=1 Xi
, (5)
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which can also be expressed as

GNP (Xn) =

∑n
i=1

(
2 i−1

n−1 − 1
)
X(i)∑n

i=1 X(i)
=

1
n

∑n
i=1 Z(i)

1
n

∑n
i=1 Xi

, (6)

where X(1), X(2), . . . , X(n) are the ordered statistics of X1, . . . , Xn, such that: X(1) < X(2) < · · · < X(n) and Z(i) =
(
2 i−1

n−1 − 1
)
X(i).

The asymptotic normality of the estimator in Eq. (6) under the hypothesis of finite variance for the data generating process
is known [2,7]. The result directly follows from the properties of the U-statistics and the L-estimators involved in Eq. (6).

A standard methodology to prove the limiting distribution of the estimator in Eq. (6), and more in general of a linear
combination of order statistics, is to show that, in the limit for n → ∞, the sequence of order statistics can be approximated
by a sequence of i.i.d random variables [21,22]. However, this usually requires some sort of L2 integrability of the data
generating process, something we are not assuming here. Lemma 1 (proved in the Appendix) shows how to deal with
the case of sequences of order statistics generated by fat-tailed L1-only integrable random variables.

Lemma 1. Consider the following sequence Rn =
1
n

∑n
i=1

( i
n − U(i)

)
F−1(U(i)) where U(i) are the order statistics of a uniformly

distributed i.i.d random sample. Assume that F−1(U) ∈ L1. Then the following results hold:

Rn
L1
−→ 0, (7)

and

n
α−1
α

L0(n)
Rn

L1
−→ 0, (8)

with α ∈ (1, 2) and L0(n) a slowly-varying function.

2.1. A quick recap on α-stable random variables

We here introduce some notation for α-stable distributions, as we need them to study the asymptotic limit of the Gini
index.

A random variable X follows an α-stable distribution, in symbols X ∼ S(α, β, γ , δ), if its characteristic function is

E(eitX ) =

{
e−γ α

|t|α (1−iβ sign(t)) tan( πα
2 )+iδt α ̸= 1

e−γ |t|(1+iβ 2
π sign(t)) ln|t|+iδt α = 1,

where α ∈ (0, 2) governs the tail, β ∈ [−1, 1] is the skewness, γ ∈ R+ is the scale parameter, and δ ∈ R is the location one.
This is known as the S1 parametrization of α-stable distributions [23,24].

Interestingly, there is a correspondence between theα parameter of anα-stable randomvariable, and theα of a regularly-
varying random variable as per Eq. (1): as shown in [19,23], a regularly-varying random variable of order α is α-stable, with
the same tail coefficient. This is why we do not make any distinction in the use of the α here. Since we aim at dealing with
distributions characterized by finite mean but infinite variance, we restrict our focus to α ∈ (1, 2), as the two α’s coincide.

Recall that, for α ∈ (1, 2], the expected value of an α-stable random variable X is equal to the location parameter δ,
i.e. E(X) = δ. For more details, we refer to [23,24].

The standardized α-stable random variable is expressed as

Sα,β ∼ S(α, β, 1, 0). (9)

We note that α-stable distributions are a subclass of infinitely divisible distributions. Thanks to their closure under
convolution, they can be used to describe the limiting behavior of (rescaled) partials sums, Sn =

∑n
i=1Xi, in the General

Central Limit Theorem (GCLT) setting [19]. For α = 2 we obtain the normal distribution as a special case, which is the limit
distribution for the classical CLTs, under the hypothesis of finite variance.

In what follows we indicate that a random variable is in the domain of attraction of an α-stable distribution, by writing
X ∈ DA(Sα). Just observe that this condition for the limit of partial sums is equivalent to the one given in Eq. (2) for the limit
of partial maxima [4,19].

2.2. The α-stable asymptotic limit of the gini index

Consider a sample X1, . . . , Xn of i.i.d. observations with a continuous c.d.f. F (x) in the regularly-varying class, as defined
in Eq. (1), with tail index α ∈ (1, 2). The data generating process for the sample is in the domain of attraction of a Fréchet
distribution with ρ ∈ ( 12 , 1), given that ρ =

1
α
.



260 A. Fontanari et al. / Physica A 502 (2018) 256–269

For the asymptotic distribution of the Gini index estimator, as presented in Eq. (6), when the data generating process is
characterized by an infinite variance, we can make use of the following two theorems: Theorem 2 deals with the limiting
distribution of the Gini Mean Difference (the numerator in Eq. (6)), while Theorem 3 extends the result to the complete Gini
index. Proofs for both theorems are in the Appendix.

Theorem 2. Consider a sequence (Xi)1≤i≤n of i.i.d random variables from a distribution X on [c, +∞) with c > 0, such that X is
in the domain of attraction of an α-stable random variable, X ∈ DA(Sα), with α ∈ (1, 2). Then the sample Gini mean deviation
(GMD)

∑n
i=1Z(i)
n satisfies the following limit in distribution:

n
α−1
α

L0(n)

(
1
n

n∑
i=1

Z(i) − θ

)
d

→ Sα,1, (10)

where Zi = (2F (Xi) − 1)Xi, E(Zi) = θ , L0(n) is a slowly-varying function such that Eq. (37) holds (see the Appendix), and Sα,1 is
a right-skewed standardized α-stable random variable defined as in Eq. (9).

Moreover the statistic 1
n

∑n
i=1Z(i) is an asymptotically consistent estimator for the GMD, i.e. 1

n

∑n
i=1Z(i)

P
→ θ .

Note that Theorem 2 could be restated in terms of the maximum domain of attractionMDA(Φ(ρ)) as defined in Eq. (2).

Theorem 3. Given the same assumptions of Theorem 2, the estimated Gini index GNP (Xn) =

∑n
i=1Z(i)∑n
i=1Xi

satisfies the following limit
in distribution

n
α−1
α

L0(n)

(
GNP (Xn) −

θ

µ

)
d

→ Q , (11)

where E(Zi) = θ , E(Xi) = µ, L0(n) is the same slowly-varying function defined in Theorem 2 and Q is a right-skewed α-stable
random variable S(α, 1, 1

µ
, 0).

Furthermore the statistic
∑n

i=1Z(i)∑n
i=1Xi

is an asymptotically consistent estimator for the Gini index, i.e.
∑n

i=1Z(i)∑n
i=1Xi

P
→

θ
µ

= g.

In the case of fat tails with α ∈ (1, 2), Theorem 3 tells us that the asymptotic distribution of the Gini estimator is always
right-skewed notwithstanding the distribution of the underlying data generating process. Therefore heavily fat-tailed data
not only induce a fatter-tailed limit for the Gini estimator, but they also change the shape of the limit law, which definitely
moves away from the usual symmetric Gaussian. As a consequence, the Gini estimator, whose asymptotic consistency is
still guaranteed [22], will approach its true value more slowly, and from below. Some evidence of this was already given in
Table 1.

3. The maximum likelihood estimator

Theorem 3 indicates that the usual nonparametric estimator for the Gini index is not the best option when dealing with
infinite-variance distributions, due to the skewness and the fatness of its asymptotic limit. The aim is to find estimators that
still preserve their asymptotic normality under fat tails, which is not possible with nonparametric methods, as they all fall
into the α-stable Central Limit Theorem case [4,19]. Hence the solution is to use parametric techniques.

Theorem 4 shows how, once a parametric family for the data generating process has been identified, it is possible to
estimate the Gini index via MLE. The resulting estimator is not just asymptotically normal, but also asymptotically efficient.

In Theorem 4 we deal with random variables X whose distribution belongs to the large and flexible exponential family,
i.e. whose density can be represented as

fθ (x) = h(x)e(η(θ )T (x)−A(θ )),

with θ ∈ R, and where T (x), η(θ ), h(x), A(θ ) are known functions [25].

Theorem 4. Let X ∼ Fθ such that Fθ is a distribution belonging to the exponential family. Then the Gini index obtained by
plugging-in the maximum likelihood estimator of θ , GML(Xn)θ , is asymptotically normal and efficient. Namely:

√
n(GML(Xn)θ − gθ )

d
→ N(0, g ′2

θ I−1(θ )), (12)

where g ′

θ =
dgθ
dθ and I(θ ) is the Fisher Information.

Proof. The result follows easily from the asymptotic efficiency of the maximum likelihood estimators of the exponential
family, and the invariance principle of MLE. In particular, the validity of the invariance principle for the Gini index is granted
by the continuity and the monotonicity of gθ with respect to θ . The asymptotic variance is then obtained by application of
the delta-method [25]. □
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4. A paretian illustration

We provide an illustration of the obtained results using some artificial fat-tailed data. We choose a Pareto I [3], with
density

f (x) = αcαx−α−1 , x ≥ c. (13)

It is easy to verify that the corresponding survival function F̄ (x) belongs to the regularly-varying class with tail parameter α
and slowly-varying function L(x) = cα . We can therefore apply the results of Section 2 to obtain the following corollaries.

Corollary 1. Let X1, . . . , Xn be a sequence of i.i.d. observations with Pareto distribution with tail parameter α ∈ (1, 2). The
nonparametric Gini estimator is characterized by the following limit:

DNP
n = GNP (Xn) − g ∼ S

⎛⎝α, 1,
C

−
1
α

α

n
α−1
α

(α − 1)
α

, 0

⎞⎠ . (14)

Proof. Without loss of generality we can assume c = 1 in Eq. (13). The results is a mere application of Theorem 3,
remembering that a Pareto distribution is in the domain of attraction of α-stable random variables with slowly-varying
function L(x) = 1. The sequence cn to satisfy Eq. (37) becomes cn = n

1
α C

−
1
α

α , therefore we have L0(n) = C
−

1
α

α , which is
independent of n. Additionally the mean of the distribution is also a function of α, that is µ =

α
α−1 . □

Corollary 2. Let the sample X1, . . . , Xn be distributed as in Corollary 1, let GML
θ be the maximum likelihood estimator for the Gini

index as defined in Theorem 4. Then the MLE Gini estimator, rescaled by its true mean g, has the following limit:

DML
n = GML

α (Xn) − g ∼ N
(
0,

4α2

n(2α − 1)4

)
, (15)

where N indicates a Gaussian.

Proof. The functional form of the maximum likelihood estimator for the Gini index is known to be GML
θ =

1
2αML−1

[2]. The
result then follows from the fact that the Pareto distribution (with known minimum value xm) belongs to an exponential
family and therefore satisfies the regularity conditions necessary for the asymptotic normality and efficiency of the
maximum likelihood estimator. Also notice that the Fisher information for a Pareto distribution is 1

α2 . □

Now that we have worked out both asymptotic distributions, we can compare the quality of the convergence for both
the MLE and the nonparametric case when dealing with Paretian data, which we use as the prototype for the more general
class of fat-tailed observations.

In particular, we can approximate the distributions of the deviations of the estimators from the true value g of the Gini
index for finite sample sizes, by using Eqs. (14) and (15).

Fig. 2 shows how the deviations around the mean of the two different types of estimators are distributed and how
these distributions change as the number of observations increases. In particular, to facilitate the comparison between the
maximum likelihood and the nonparametric estimators, we fixed the number of observation in the MLE case, while letting
them vary in the nonparametric one. We perform this study for different types of tail indices to show how large the impact
is on the consistency of the estimator. It is worth noticing that, as the tail index decreases towards 1 (the threshold value
for a infinite mean), the mode of the distribution of the nonparametric estimator moves farther away from the mean of the
distribution (centered on 0 by definition, given that we are dealing with deviations from themean). This effect is responsible
for the small sample bias observed in applications. Such a phenomenon is not present in theMLE case, thanks to the normality
of the limit for every value of the tail parameter.

We can make our argument more rigorous by assessing the number of observations ñ needed for the nonparametric
estimator to be as good as the MLE one, under different tail scenarios. Let us consider the likelihood-ratio-type function

r(c, n) =
PS(|DNP

n | > c)
PN (|DML

100| > c)
, (16)

where PS(|DNP
n | > c) and PN (|DML

100| > c) are the probabilities (α-stable and Gaussian respectively) of the centered estimators
in the nonparametric, and in the MLE cases, of exceeding the thresholds ±c , as per Eqs. (14) and (15). In the nonparametric
case the number of observations n is allowed to change, while in the MLE case it is fixed to 100. We then look for the value ñ
such that r(c, ñ) = 1 for fixed c . Table 2 displays the results for different thresholds c and tail parameters α. In particular, we
can see how the MLE estimator outperforms the nonparametric one, which requires a much larger number of observations
to obtain the same tail probability of theMLEwith n fixed to 100. For example, we need at least 80×106 observations for the
nonparametric estimator to obtain the same probability of exceeding the ±0.02 threshold of the MLE one, when α = 1.2.

Interestingly, the number of observations needed to match the tail probabilities in Eq. (16) does not vary uniformly with
the threshold. This is expected, since as the threshold goes to infinity or to zero, the tail probabilities remain the same
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(a) α = 1.8. (b) α = 1.6.

(c) α = 1.4. (d) α = 1.2.

Fig. 2. Comparisons between the maximum likelihood and the nonparametric asymptotic distributions for different values of the tail index α. The number
of observations forMLE is fixed to n = 100. Note that, even if all distributions havemean zero, themode of the distributions of the nonparametric estimator
is different from zero, because of the skewness.

Table 2
The number of observations ñ needed for the nonparametric estimator to
match the tail probabilities, for different threshold values c and different val-
ues of the tail index α, of the maximum likelihood estimator with fixed n =

100.

α Threshold c as per Eq. (16):

0.005 0.01 0.015 0.02

1.8 27 × 103 12 × 105 12 × 106 63 × 105

1.5 21 × 104 21 × 104 46 × 105 81 × 107

1.2 33 × 108 67 × 107 20 × 107 80 × 106

for every value of n. Therefore, given the unimodality of the limit distributions, we expect that there will be a threshold
maximizing the number of observations needed to match the tail probabilities, while for all the other levels the number of
observations will be smaller.

We conclude that, when in presence of fat-tailed data with infinite variance, a plug-in MLE based estimator should be
preferred over the nonparametric one.

5. Small sample correction

Theorem 3 can be also used to provide a correction for the bias of the nonparametric estimator for small sample sizes.
The key idea is to recognize that, for unimodal distributions, most observations come from around the mode. In symmetric
distributions the mode and the mean coincide, thus most observations will be close to the mean value as well, not so for
skewed distributions: for right-skewed continuous unimodal distributions the mode is lower than the mean. Therefore,
given that the asymptotic distribution of the nonparametric Gini index is right-skewed, we expect that the observed value
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of the Gini index will be usually lower than the true one (placed at the mean level). We can quantify this difference (i.e. the
bias) by looking at the distance between the mode and the mean, and once this distance is known, we can correct our Gini
estimate by adding it back2 .

Formally, we aim to derive a corrected nonparametric estimator GC (Xn) such that

GC (Xn) = GNP (Xn) + ∥m(GNP (Xn)) − E(GNP (Xn))∥, (17)

where ∥m(GNP (Xn))−E(GNP (Xn))∥ is the distance between themodem and themean of the distribution of the nonparametric
Gini estimator GNP (Xn).

Performing the type of correction described in Eq. (17) is equivalent to shifting the distribution of GNP (Xn) in order to
place its mode on the true value of the Gini index.

Ideally, we would like to measure this mode–mean distance ∥m(GNP (Xn)) − E(GNP (Xn))∥ on the exact distribution of
the Gini index to get the most accurate correction. However, the finite distribution is not always easily derivable as it
requires assumptions on the parametric structure of the data generating process (which, in most cases, is unknown for
fat-tailed data [2]). We therefore propose to use the limiting distribution for the nonparametric Gini obtained in Section 2 to
approximate the finite sample distribution, and to estimate themode–mean distancewith it. This procedure allows formore
freedom in the modeling assumptions and potentially decreases the number of parameters to be estimated, given that the
limiting distribution only depends on the tail index and the mean of the data, which can be usually assumed to be a function
of the tail index itself, as in the Paretian case where µ =

α
α−1 .

By exploiting the location-scale property ofα-stable distributions and Eq. (11),we approximate the distribution ofGNP (Xn)
for finite samples by

GNP (Xn) ∼ S (α, 1, γ (n), g) , (18)

where γ (n) =
1

n
α−1
α

L0(n)
µ

is the scale parameter of the limiting distribution.
As a consequence, thanks to the linearity of the mode for α-stable distributions, we have

∥m(GNP (Xn)) − E(GNP (Xn))∥ ≈ ∥m(α, γ (n)) + g − g∥ = ∥m(α, γ (n))∥,

wherem(α, γ (n)) is the mode function of an α-stable distribution with zero mean.
The implication is that, in order to obtain the correction term, knowledge of the true Gini index is not necessary, given

thatm(α, γ (n)) does not depend on g . We then estimate the correction term as

m̂(α, γ (n)) = argmax
x

s(x), (19)

where s(x) is the numerical density of the associated α-stable distribution in Eq. (18), but centered on 0. This comes from the
fact that, for α-stable distributions, the mode is not available in closed form, but it can be easily computed numerically [23],
using the unimodality of the law.

The corrected nonparametric estimator is thus

GC (Xn) = GNP (Xn) + m̂(α, γ (n)), (20)

whose asymptotic distribution is

GC (Xn) ∼ S
(
α, 1, γ (n), g + m̂(α, γ (n))

)
. (21)

Note that the correction term m̂ (α, γ (n)) is a function of the tail index α and is connected to the sample size n by the
scale parameter γ (n) of the associated limiting distribution. It is important to point out that m̂(α, γ (n)) is decreasing in n,
and that limn→∞m̂(α, γ (n)) → 0. This happens because, as n increases, the distribution described in Eq. (18) becomes more
and more centered around its mean value, shrinking to zero the distance between the mode and the mean. This ensures the
asymptotic equivalence of the corrected estimator and the nonparametric one. Just observe that

lim
n→∞

|G(Xn)C − GNP (Xn)| = lim
n→∞

|GNP (Xn) + m̂(α, γ (n)) − GNP (Xn)|

= lim
n→∞

|m̂(α, γ (n))| → 0.

Naturally, thanks to the correction, GC (Xn) will always behave better in small samples. Consider also that, from Eq. (21),
the distribution of the corrected estimator has now for mean g + m̂(α, γ (n)), which converges to the true Gini g as n → ∞.

From a theoretical point of view, the quality of this correction depends on the distance between the exact distribution
of GNP (Xn) and its α-stable limit; the closer the two are to each other, the better the approximation. However, given that, in
most cases, the exact distribution of GNP (Xn) is unknown, it is not possible to give more details.

2 Another idea, which we have tested in writing the paper, is to use the distance between the median and the mean; the performances are comparable.
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(a) α = 1.8. (b) α = 1.6.

(c) α = 1.4. (d) α = 1.2.

Fig. 3. Comparisons between the corrected nonparametric estimator (in red, the one on top) and the usual nonparametric estimator (in black, the one
below). For small sample sizes the corrected one clearly improves the quality of the estimation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

From what we have written so far, it is clear that the correction term depends on the tail index of the data, and possibly
also on their mean. These parameters, if not assumed to be known a priori, must be estimated. Therefore the additional
uncertainty due to the estimation will reflect also on the quality of the correction.

We conclude this Section with the discussion of the effect of the correction procedure with a simple example. In a Monte
Carlo experiment, we simulate 1000 Paretian samples of increasing size, from n = 10 to n = 2000, and for each sample
size we compute both the original nonparametric estimator GNP (Xn) and the corrected GC (Xn). We repeat the experiment
for different α’s. Fig. 3 presents the results.

It is clear that the corrected estimators always perform better than the uncorrected ones in terms of absolute deviation
from the true Gini value. In particular, our numerical experiment shows that for small sample sizes with n ≤ 1000 the gain
is quite remarkable for all the different values of α ∈ (1, 2). However, as expected, the difference between the estimators
decreases with the sample size, as the correction term decreases both in n and in the tail index α. Notice that, when the tail
index equals 2, we obtain the symmetric Gaussian distribution and the two estimators coincide, given that, thanks to the
finiteness of the variance, the nonparametric estimator is no longer biased.

6. Conclusions

In this paperwe address the issue of the asymptotic behavior of the nonparametric estimator of the Gini index in presence
of a distribution with infinite variance, an issue that has been curiously ignored by the literature. The central mistake in the
nonparametric methods largely used is to believe that asymptotic consistency translates into equivalent pre-asymptotic
properties.

We show that a parametric approach provides better asymptotic results thanks to the properties of maximum likelihood
estimation. Hence we strongly suggest that, if the collected data are suspected to be fat-tailed, parametric methods should
be preferred.
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In situations where a fully parametric approach cannot be used, we propose a simple correction mechanism for the
nonparametric estimator based on the distance between the mode and the mean of its asymptotic distribution. Even if the
correction works nicely, we suggest caution in its use owing to additional uncertainty from the estimation of the correction
term.
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Appendix

Proof of Lemma1. LetU = F (X) be the standard uniformly distributed integral probability transformof the randomvariable
X . For the order statistics, we then have [21]: X(i)

a.s.
= F−1(U(i)). Hence

Rn =
1
n

n∑
i=1

(i/n − U(i))F−1(U(i)). (22)

Now by definition of empirical c.d.f it follows that

Rn =
1
n

n∑
i=1

(Fn(U(i)) − U(i))F−1(U(i)), (23)

where Fn(u) =
1
n

∑n
i=11Ui≤u is the empirical c.d.f of uniformly distributed random variables.

To show that Rn
L1
−→ 0, we are going to impose an upper bound that goes to zero. First we notice that

E|Rn| ≤
1
n

n∑
i=1

E|(Fn(U(i)) − U(i))F−1(U(i))|. (24)

To build a bound for the right-hand side (r.h.s) of (24), we can exploit the fact that, while F−1(U(i))might be just L1-integrable,
Fn(U(i)) − U(i) is L∞ integrable, therefore we can use Hölder’s inequality with q = ∞ and p = 1. It follows that

1
n

n∑
i=1

E|(Fn(U(i)) − U(i))F−1(U(i))| ≤
1
n

n∑
i=1

E sup
U(i)

|(Fn(U(i)) − U(i))|E|F−1(U(i))|. (25)

Then, thanks to the Cauchy–Schwarz inequality, we get

1
n

n∑
i=1

E sup
U(i)

|(Fn(U(i)) − U(i))|E|F−1(U(i))|

≤

(
1
n

n∑
i=1

(E sup
U(i)

|(Fn(U(i)) − U(i))|)2
1
n

n∑
i=1

(E(F−1(U(i))))2
) 1

2

. (26)

Now, first recall that
∑n

i=1F
−1(U(i))

a.s.
=

∑n
i=1F

−1(Ui) with Ui, i = 1, . . . , n, being an i.i.d sequence, then notice that
E(F−1(Ui)) = µ, so that the second term of Eq. (26) becomes

µ

(
1
n

n∑
i=1

(E sup
U(i)

|(Fn(U(i)) − U(i))|)2
) 1

2

. (27)

The final step is to show that Eq. (27) goes to zero as n → ∞.
We know that Fn is the empirical c.d.f of uniform random variables. Using the triangular inequality the inner term

of Eq. (27) can be bounded as

1
n

n∑
i=1

(E sup
U(i)

|(Fn(U(i)) − U(i))|)2

≤
1
n

n∑
i=1

(E sup
U(i)

|(Fn(U(i)) − F (U(i)))|)2 +
1
n

n∑
i=1

(E sup
U(i)

|(F (U(i)) − U(i))|)2. (28)

Since we are dealing with uniforms, we known that F (U) = u, and the second term in the r.h.s of (28) vanishes.



266 A. Fontanari et al. / Physica A 502 (2018) 256–269

We can then bound E(supU(i)
|(Fn(U(i)) − F (U(i)))|) using the so called Vapnik–Chervonenkis (VC) inequality, a uniform

bound for empirical processes [26–28], getting

E sup
U(i)

|(Fn(U(i)) − F (U(i)))| ≤

√
log(n + 1) + log(2)

n
. (29)

Combining Eq. (29) with Eq. (27) we obtain

µ

(
1
n

n∑
i=1

(E sup
U(i)

|(Fn(U(i)) − U(i))|)2
) 1

2

≤ µ

√
log(n + 1) + log(2)

n
, (30)

which goes to zero as n → ∞, thus proving the first claim.

For the second claim, it is sufficient to observe that the r.h.s of (30) still goes to zerowhenmultiplied by n
α−1
α

L0(n)
if α ∈ (1, 2).

Proof of Theorem 2. The first part of the proof consists in showing that we can rewrite Eq. (10) as a function of i.i.d random
variables in place of order statistics, to be able to apply a Central Limit Theorem (CLT) argument.

Let us start by considering the sequence

1
n

n∑
i=1

Z(i) =
1
n

n∑
i=1

(
2
i − 1
n − 1

− 1
)
F−1(U(i)). (31)

Using the integral probability transform X d
= F−1(U) with U standard uniform, and adding and removing 1

n

∑n
i=1(

2U(i) − 1
)
F−1(U(i)), the r.h.s. in Eq. (31) can be rewritten as

1
n

n∑
i=1

Z(i) =
1
n

n∑
i=1

(2U(i) − 1)F−1(U(i)) +
1
n

n∑
i=1

2
(

i − 1
n − 1

− U(i)

)
F−1(U(i)). (32)

Then, by using the properties of order statistics [21] we obtain the following almost sure equivalence

1
n

n∑
i=1

Z(i)
a.s.
=

1
n

n∑
i=1

(2Ui − 1)F−1(Ui) +
1
n

n∑
i=1

2
(

i − 1
n − 1

− U(i)

)
F−1(U(i)). (33)

Note that the first term in the r.h.s of (33) is a function of i.i.d random variables as desired, while the second term is just
a reminder, therefore

1
n

n∑
i=1

Z(i)
a.s.
=

1
n

n∑
i=1

Zi + Rn,

with Zi = (2Ui − 1)F−1(Ui) and Rn =
1
n

∑n
i=12

( i−1
n−1 − U(i)

)
F−1(U(i)).

Given Eq. (10) and exploiting the decomposition given in (33) we can rewrite our claim as

n
α−1
α

L0(n)

(
1
n

n∑
i=1

Z(i) − θ

)
=

n
α−1
α

L0(n)

(
1
n

n∑
i=1

Zi − θ

)
+

n
α−1
α

L0(n)
Rn. (34)

From the second claim of Lemma 1 and Slutsky Theorem, the convergence in Eq. (10) can be proven by looking at the
behavior of the sequence

n
α−1
α

L0(n)

(
1
n

n∑
i=1

Zi − θ

)
, (35)

where Zi = (2Ui − 1)F−1(Ui) = (2F (Xi) − 1)Xi. This reduces to proving that Zi is in the fat tails domain of attraction.
Recall that by assumption X ∈ DA(Sα) withα ∈ (1, 2). This assumption enables us to use a particular type of CLT argument

for the convergence of the sum of fat-tailed random variables. However, we first need to prove that Z ∈ DA(Sα) as well, that
is P(|Z | > z) ∼ L(z)z−α , with α ∈ (1, 2) and L(z) slowly-varying.

Notice that

P(|Z̃ | > z) ≤ P(|Z | > z) ≤ P(2X > z),

where Z̃ = (2U − 1)X and U ⊥ X . The first bound holds because of the positive dependence between X and F (X) and it
can be proven rigorously by noting that 2UX ≤ 2F (X)X by the so-called re-arrangement inequality [29]. The upper bound
conversely is trivial.
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Using the properties of slowly-varying functions, we have P(2X > z) ∼ 2αL(z)z−α . To show that Z̃ ∈ DA(Sα), we use the
Breiman’s Theorem, which ensure the stability of the α-stable class under product, as long as the second random variable is
not too fat-tailed [30].

To apply the theorem we re-write P(|Z̃ | > z) as

P(|Z̃ | > z) = P(Z̃ > z) + P(−Z̃ > z) = P(ŨX > z) + P(−ŨX > z),

where Ũ is a standard uniform with Ũ ⊥ X .
We focus on P(ŨX > z) since the procedure is the same for P(−ŨX > z). We have

P(ŨX > z) = P(ŨX > z|Ũ > 0)P(Ũ > 0) + P(ŨX > z|Ũ ≤ 0)P(Ũ ≤ 0),

for z → +∞.
Now, we have that P(ŨX > z|Ũ ≤ 0) → 0, while, by applying Breiman’s Theorem, P(ŨX > z|Ũ > 0) becomes

P(ŨX > z|Ũ > 0) → E(Ũα
|U > 0)P(X > z)P(U > 0).

Therefore

P(|Z̃ | > z) →
1
2
E(Ũα

|U > 0)P(X > z) +
1
2
E((−Ũ)α|U ≤ 0)P(X > z).

From this

P(|Z̃ | > z) →
1
2
P(X > z)[E(Ũ)α|U > 0) + E((−Ũα

|U ≤ 0)]

=
2α

1 − α
P(X > z) ∼

2α

1 − α
L(z)z−α.

We can then conclude that, by the squeezing Theorem [19],

P(|Z | > z) ∼ L(z)z−α,

as z → ∞. Therefore Z ∈ DA(Sα).
We are now ready to invoke the Generalized Central Limit Theorem (GCLT) [4] for the sequence Zi, i.e.

nc−1
n

(
1
n

n∑
i=1

Zi − E(Zi)

)
d

→ Sα,β (36)

with E(Zi) = θ , Sα,β a standardized α-stable random variable, and where cn is a sequence which must satisfy

lim
n→∞

nL(cn)
cα
n

=
Γ (2 − α)|cos( πα

2 )|
α − 1

= Cα. (37)

Notice that cn can be represented as cn = n
1
α L0(n), where L0(n) is another slowly-varying function possibly different from

L(n).
The skewness parameter β is such that

P(Z > z)
P(|Z | > z)

→
1 + β

2
.

Recalling that, by construction, Z ∈ [−c, +∞), the above expression reduces to
P(Z > z)

P(Z > z) + P(−Z > z)
→

P(Z > z)
P(Z > z)

= 1 →
1 + β

2
, (38)

therefore β = 1. This, combined with Eq. (34), the result for the reminder Rn of Lemma 1 and Slutsky Theorem, allows us to
conclude that the same weak limits holds for the ordered sequence of Z(i) in Eq. (10) as well.

Proof of Theorem 3. The first step of the proof is to show that the ordered sequence
∑n

i=1Z(i)∑n
i=1Xi

, characterizing the Gini index, is

equivalent in distribution to the i.i.d sequence
∑n

i=1Zi∑n
i=1Xi

. In order to prove this, it is sufficient to apply the factorization in Eq. (33)
to Eq. (11), getting

n
α−1
α

L0(n)

(∑n
i=1 Zi∑n
i=1 Xi

−
θ

µ

)
+

n
α−1
α

L0(n)
Rn

n∑n
i=1 Xi

. (39)

By Lemma 1 and the application of the continuous mapping and Slutsky Theorems, the second term in Eq. (39) goes to zero
at least in probability. Therefore to prove the claim it is sufficient to derive a weak limit for the following sequence

n
α−1
α

1
L0(n)

(∑n
i=1 Zi∑n
i=1 Xi

−
θ

µ

)
. (40)
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Expanding Eq. (40) and recalling that Zi = (2F (Xi) − 1)Xi, we get

n
α−1
α

L0(n)
n∑n
i=1 Xi

(
1
n

n∑
i=1

Xi

(
2F (Xi) − 1 −

θ

µ

))
. (41)

The term n∑n
i=1Xi

in Eq. (41) converges in probability to 1
µ
by an application of the continuous mapping theorem, and the fact

that we are dealing with positive random variables X . Hence it will contribute to the final limit via Slutsky Theorem.
We first start by focusing on the study of the limit law of the term

n
α−1
α

L0(n)
1
n

n∑
i=1

Xi

(
2F (Xi) − 1 −

θ

µ

)
. (42)

Set Ẑi = Xi(2F (Xi) − 1 −
θ
µ
) and note that E(Ẑi) = 0, since E(Zi) = θ and E(Xi) = µ.

In order to apply a GCLT argument to characterize the limit distribution of the sequence n
α−1
α

L0(n)
1
n

∑n
i=1Ẑi we need to prove

that Ẑ ∈ DA(Sα). If so then we can apply GCLT to

n
α−1
α

L0(n)

(∑n
i=1 Ẑi
n

− E(Ẑi)

)
. (43)

Note that, since E(Ẑi) = 0, Eq. (43) equals Eq. (42).
To prove that Ẑ ∈ DA(Sα), remember that Ẑi = Xi(2F (Xi) − 1 −

θ
µ
) is just Zi = Xi(2F (Xi) − 1) shifted by θ

µ
. Therefore the

same argument used in Theorem 2 for Z applies here to show that Ẑ ∈ DA(Sα). In particular we can point out that Ẑ and Z
(therefore also X) share the same α and slowly-varying function L(n).

Notice that by assumption X ∈ [c, ∞) with c > 0 and we are dealing with continuous distributions, therefore
Ẑ ∈ [−c(1 +

θ
µ
), ∞). As a consequence the left tail of Ẑ does not contribute to changing the limit skewness parameter

β , which remains equal to 1 (as for Z) by an application of Eq. (38).
Therefore, by applying the GCLT we finally get

n
α−1
α

1
L0(n)

(
∑n

i=1 Zi∑n
i=1 Xi

−
θ

µ
)

d
−→

1
µ
S(α, 1, 1, 0). (44)

We conclude the proof by noting that, as proven in Eq. (39), the weak limit of the Gini index is characterized by the
i.i.d sequence of

∑n
i=1Zi∑n
i=1Xi

rather than the ordered one, and that an α-stable random variable is closed under scaling by a
constant [24].
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