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a b s t r a c t

We introduce a novel approach to risk management, based on the study of concentration measures
of the loss distribution. We show that indices like the Gini index, especially when restricted to the
tails by conditioning and truncation, give us an accurate way of assessing the variability of the larger
losses – the most relevant ones – and the reliability of common risk management measures like the
Expected Shortfall. We first present the Concentration Profile, which is formed by a sequence of truncated
Gini indices, to characterize the loss distribution, providing interesting information about tail risk. By
combining Concentration Profiles and standard results from utility theory, we develop the Concentration
Map, which can be used to assess the risk attached to potential losses on the basis of the risk profile of
a user, her beliefs and historical data. Finally, with a sequence of truncated Gini indices as weights for
the Expected Shortfall, we define the Concentration Adjusted Expected Shortfall, a measure able to capture
additional features of tail risk. Empirical examples and codes for the computation of all the tools are
provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper introduces a way of dealing with tail risk in loss
distributions, for riskmanagement purposes, on the basis of a class
of tools derived from concentrationmeasures. The objects of study
are losses in general, for which we assume data is available, with
no particular reference to the source of risk.

Following a common convention in risk management (Hull,
2012), we model losses as a positive random variable Y , bounded
or unbounded to the right, with continuous distribution function
F (y), restricting our attention to a static framework, in which
the (unconditional) loss distribution is given and does not vary
over time. The choice of a static approach is not a limitation in
many fields of risk management, where the time horizon onwhich
losses are defined is relatively large (Resti and Sironi, 2007), and
the dependence among losses is not a major source of concern1

; an example being the one-year credit loss distribution, com-
monly used by banks under the Basel framework (Basel Committee

* Correspondence to: Applied Probability Group, EEMCS Faculty, Delft University
of Technology, Mekelweg 4, 2628CD Delft, The Netherlands.

E-mail address: P.Cirillo@tudelft.nl (P. Cirillo).
1 Several interesting dynamic approaches dealing with dependence and time

evolution also exist, for example in operational risk (Chavez-Demoulin et al., 2016;
Moscadelli, 2004), or in market and credit risk (see McNeil et al., 2015, and refer-
ences therein), but we do not deal with them here.

on Banking Supervision — BCBS, 2006, 2011) with the so-called
historical simulation approach (Hull, 2012).

Value-at-Risk (VaR) and Expected Shortfall (ES) represent two
important risk measures in modern risk management (Basel Com-
mittee on Banking Supervision — BCBS, 2006, 2011; Embrechts et
al., 2003; Hull, 2012; McNeil et al., 2015). Despite their popularity,
these measures are not really able to convey reliable information
on how losses are dispersed in the tail: it is indeed not difficult to
image several distributions sharing the same VaR and ES, but with
different risk profiles because of a diverse tail behavior. A measure
of the dispersion of the losses beyond VaR is therefore needed, as
a way of assessing the precision of the ES in representing tail risk.
Empirical studies (Embrechts et al., 2003; Hull, 2012; Kleiber and
Kotz, 2003; McNeil et al., 2015) show that losses tend to follow
skewed heavy-tailed distributions, in which the right tail is so
fat that often the assumption of a finite second moment is too
stringent, thus suggesting thatmeasures of dispersion based on the
variance should be avoided.

Our proposal is to make use of concentration (or inequality)
measures (Eliazar and Sokolov, 2012; Kleiber and Kotz, 2003;
Yitzhaki and Schechtman, 2013) to analyze the dispersion of risk
in the tail, and we focus our attention on the Lorenz curve (Lorenz,
1905) and the corresponding Gini index (Gini, 1912), for which we
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derive a risk management interpretation.2 In particular we show
that the Gini index does not only provide a robust measure for
the precision of the ES, assessing how losses are dispersed beyond
VaR, but it can also be used as an alternative measure for the fat-
tailedness of the loss distribution itself.

We show how a given sequence of truncated Gini indices,
whichwe call Concentration Profile (CP), can be used to characterize
losses, allowing (1) for the identification of parametric families of
distributions, and (2) for the observation of features that are not
immediately available from data, like the actual behavior of risk in
the tail. We provide a full description of the use of the CP, offering
quick heuristics for the everyday business, but also more technical
applications like goodness-of-fit tests and extreme value theory.

We then introduce the so-called Risk Concentration Map, a
graphical tool identifying the main risk factors contained in the
CP, mapping them into an easily readable plot in which, through
the use of a risk/utility function approach (Edwards, 1992), we can
attach a concise risk score to every CP. Themap canbeused to study
different loss distributions in terms of their tail risk, comparing
portfolios with different scales and magnitudes, given that the
proposed approach is scale-free.

Finally, the Concentration Adjusted Expected Shortfall (CAESα) is
introduced as the product of the Expected Shortfall at confidence
level α, i.e. ESα , and the corresponding truncated Gini index. This
quantity proves to be useful in better characterizing tail risk, com-
plementing the information provided by the CP.

The paper is structured as follows: in Section 2 we briefly
review some basic concepts about concentration measures, while
in Section 3 some common measures of risk used in risk manage-
ment are analyzed and put in relation with these concentration
measures; in Section 4, we introduce and study the Concentration
Profile, and in Section 5 we describe the Concentration Map; in
Section 6 some additional extensions based on the Concentration
Adjusted Expected Shortfall are discussed, whereas in Section 7
empirical results on simulated and actual data are provided; finally
Section 8 closes the paper. For the sake of completeness, some
Appendices A–E contain the more technical details of our work,
like proofs and explanatory calculations. Python codes for the
computation of the new tools are also provided as extra online
materials.

2. Basic concentration quantities

2.1. The Lorenz curve

Introduced by Max Lorenz in 1905 (Lorenz, 1905), the Lorenz
curve is a pivotal tool in the study of economic inequality and the
distribution of wealth in the society (Kleiber and Kotz, 2003).

Consider a positive continuous random variable Y , belonging to
the L1 class, i.e. µ = E(Y ) < ∞, and let F (y) = P(Y ≤ y) be
its cumulative distribution function. Define the quantile function
of Y as Q (α) = F−1(α), where F−1(α) = inf{y : F (y) ≤ α} with
0 ≤ α ≤ 1. The Lorenz curve L(x) is formally given by

L(x) =

∫ x
0 Q (α)dα∫ 1
0 Q (α)dα

, 0 ≤ x, α ≤ 1. (1)

In terms ofwealth, the Lorenz curve reads as follows: for a given
x ∈ [0, 1], L(x) tells us that x × 100% of the population owns
L(x) × 100% of the total wealth. Such an interpretation tells that
the Lorenz curve is scale-free: the total amount of wealth is not

2 The use of concentration measures in finance and risk management is not
completely new: an interesting application of the Gini index as a substitute of the
more common standard deviation is for instance the Mean-Gini efficient portfolio
frontier developed Shalit and Yitzhaki (1984, 2005).

Fig. 1. Graphical representation of a Lorenz curve, of the perfect equality and of
the perfect inequality lines. We also show the geometric interpretation of the Gini
index as the ratio of area A over A+B.

taken into consideration, whereas the way it is distributed among
the individuals is the key information.

Mathematically, the Lorenz curve L : [0, 1] → [0, 1] defined
in Eq. (1) is a continuous, non-decreasing, convex function, almost
everywhere differentiable in [0, 1], such that L(0) = 0 and L(1) =

1. The curve L(x) is bounded from above by the so-called perfect
equality curve, i.e. Lpe(x) = x, and from below by the perfect
inequality curve, i.e.

Lpi(x) =

{
0 0 ≤ x < 1,
1 x = 1.

The perfect equality line Lpe indicates the theoretical situation
in which everyone possesses the same amount of wealth in the
economy, while the perfect inequality line Lpi states that only one
individual owns all the wealth in the society. A visual represen-
tation of a possible Lorenz curve is given in Fig. 1, where we also
provide Lpe and Lpi.

Given its strong relation with the quantile function Q , the
Lorenz curve can fully characterize a distribution (Kleiber and
Kotz, 2003): if we know the exact functional form of L(x), we
can recover F (y) up to a constant. However, graphically, it is not
possible to discriminate among distributions just looking at their
Lorenz curves (Cirillo, 2013): a curve like that in Fig. 1 may give
an indication of how unequal a society is, but it cannot identify by
which underlying distribution such inequality is generated.

2.2. The Gini index

Given a Lorenz curve, and following Eliazar and Sokolov (2012),
we define a general concentration (or inequality) measure as

Dp =

L(x) − Lpe(x)

pLpi(x) − Lpe(x)

p

, (2)

where the denominator is for normalization purposes, so that

0 ≤ Dp ≤ 1 ∀p ∈ [1, ∞]. (3)

Values of Dp close to 1 indicate relevant variability in the data
and high concentration of wealth, while values close to 0 tell the
opposite. FromEq. (2) it is clear that, by varying the type of distance
∥·∥p, we can define different indices: the Gini index (Gini, 1912) is
obtained by fixing p = 1, i.e. G = D1 ∈ [0, 1].

In the literature there exist many equivalent representations
of the Gini index (Eliazar and Sokolov, 2012), here we adopt the
following:

G =
E(|Y1 − Y2|)

2E(Y )
=

E((Y1 − Y2)+)
E(Y )

∈ [0, 1], (4)
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where Yi, i = 1, 2 are i.i.d copies of the same random variable
Y ∼ F (y), and (Y1 − Y2)+ = max{Y1 − Y2; 0}. Formula (4)
defines the Gini index as the normalized average of the distance
between two random independent observations taken from the
underlying distribution F (y); the Gini index is therefore a measure
of variability for a random variable and its realizations, as observed
in Shalit and Yitzhaki (1984).

Let us consider two common variance-based measures like the
variance-to-mean ratio, defined as:

VM =
E(Y − E(Y ))2

E(Y )
,

or the well-known coefficient of variation

CV =

√
E(Y − E(Y ))2

E(Y )
.

Comparing themwith the Gini index, we observe the following
interesting facts:

• The Gini index is bounded between 0 (perfect equality) and
1 (perfect inequality), while measures like VM and CV are
unbounded; being normalized to the unit interval allows for
easier comparison and analysis. Also notice that the VM is
not scale-free, while the Gini index is; and even if the CV is
scale-free, its existence is not guaranteed, as we observe in
the next item.

• The Gini index is an L1-measure, meaning that it can be
computed for all random variables admitting a finite mean,
with no further requirement. This is not true for measures
like VMor CV for which the secondmoment also needs to be
finite. This is a restriction when dealing with fat-tailed data,
as losses often are Chavez-Demoulin et al. (2016), Fiordelisi
et al. (2014), Kleiber and Kotz (2003) and McNeil et al.
(2015).

• The Gini index is a quasi-convex measure (Blackorby and
Donaldson, 1980). With a little abuse of notation, if G(x) is
the Gini index of a data set (x1, . . . , xn) from a distribution
F (x), and G(y) is the Gini index associated with another
distribution H(y) and (y1, . . . , yn), it can be shown that

G(λx + (1 − λ)y) ≤ max (G(x),G(y)) , λ ∈ [0, 1].

In words: the Gini index of a data set obtained as linear
convex combination of two data sets, e.g. (λx1 + (1 −

λ)y1, . . . , λxn + (1− λ)yn), cannot be larger than the largest
Gini index from the two original data sets; or, financially, the
Gini index of a convex portfolio of losses cannot exceed any
of the original Gini indices.
Quasi-convexity is a realistic relaxation of convexity (Cam-
bini and Martein, 2009), with important consequences for
sub-additivity and risk diversification, and thus risk man-
agement in general, e.g. Frittelli and Maggis (2011), Tian
and Jiang (2015) and references therein. In particular, by
quasi-convexitywemay handle distributions of risk that are
not necessarily closed under convolution (Embrechts et al.,
2003; Shalit and Yitzhaki, 1984, 2005).

• Differently from measures of dispersion like the VM or the
CV , the Gini index does not assume an underlying symmet-
ric structure in the data, and it is thereforemore appropriate
to study the dispersion of asymmetric random variables like
those representing losses (Kleiber andKotz, 2003). As Eliazar
and Sokolov (2012) suggest, the Gini index can also be
considered as an L1 alternative to the skewness coefficient,
for measuring the asymmetry in the data, in particular to
the right. As shown in Chotikapanich (2008), the numerator
in Eq. (4) moves in the same direction as the skewness
coefficient, when the latter is defined (i.e. finite).

In Appendix A, Tables 3 and 4, we have collected the Lorenz
curves and the Gini indices of some notable loss distributions, from

the Pareto to the Weibull, together with the parameterizations we
use in this work.

3. Basic concepts of risk management

When modeling losses in risk management, it is important to
keep in mind two relevant stylized facts observed in the empirical
literature:

• When considering losses as nonnegative quantities, the loss
distribution is asymmetric and right-skewed (Fiordelisi et
al., 2014; Kleiber and Kotz, 2003).

• The loss distribution is usually fat-tailed (Chavez-Demoulin
et al., 2016; Embrechts et al., 2003; Kleiber and Kotz, 2003;
McNeil et al., 2015), and the Paretianity of the right tail often
implies the non-existence of the moments of order greater
than or equal to two.3

Given the stylized facts above, one is usually not interested in
studying the entire distribution of losses, but rather a part of it,
the right tail, where the larger losses concentrate. Most Basel reg-
ulations (Basel Committee on Banking Supervision — BCBS, 2006,
2011), but also Solvency II (2009) for insurance companies, deal
with the large unexpected losses, the few game-changers, not the
many small negligible losses we can easily hedge, thus suggesting
to deal with truncated random variables and distributions, rather
than with the original ones.

Below we provide some basic quantities that we will use in the
rest of the paper.

Definition 1. Given a positive random variable Y with c.d.f. F (y)
and p.d.f. f (y), its (left-)truncated version Yu = Y |Y ≥ u has c.d.f.

Fu(y) =
F (y) − F (u)
1 − F (u)

, u ≤ y ≤ ∞,

and p.d.f

fu(y) =
f (y)

1 − F (u)
.

The quantities Fu(y) and fu(y) are known as exceedance distribu-
tion and exceedance density of the randomvariableY , respectively.

Definition 2.Given a confidence level α ∈ (0, 1), the Value-at-Risk
(VaRα) is the statistical quantile of the loss distribution function
F (y) defined as

VaRα = inf{y ∈ R : P(Y ≥ y) ≤ 1 − α} = inf{y ∈ R : F (y) ≥ α}.

Definition3.Given aVaRα , the Expected Shortfall ESα , for a positive
Y with c.d.f. F (y), is given by

ESα = E(Y | Y > VaRα).

Interestingly, the ESα is the mean of the truncated random
variable Yu, when the truncation occurs in u = VaRα . Just notice
that

E(Y | Y > u) =

∫
+∞

u
yfu(y)dy, u > 0.

VaRα and ESα are two fundamental measures of risk in modern
risk management (Basel Committee on Banking Supervision —
BCBS, 2011; Hull, 2012; McNeil et al., 2015). It is well-known that,
while the ESα is a coherent risk measure (positive homogeneous,

3 In the case of operational risk, even the first moment, themean, may be infinite
(Chavez-Demoulin et al., 2016; Cirillo and Taleb, 2016; Moscadelli, 2004), but we
ignore this radical case here. Naturally, in such a situation, the Gini index itself
would not be defined.
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monotone, translation invariant and sub-additive), the VaRα is not,
unless we restrict our attention to elliptic loss distributions and
co-monotonic portfolios (Embrechts et al., 2003; Resti and Sironi,
2007). Therefore, in the recent years, ESα appears to be preferred
by regulators (Basel Committee on Banking Supervision — BCBS,
2011; Solvency II, 2009), even if bothmeasures have been criticized
by experts (McNeil et al., 2015), for their incapacity of dealing with
the dispersion of losses in the tails.4 It is in fact not difficult to
imagine several loss distributions with different tails, but sharing
the same VaRα and ESα values. This is why a measure of dispersion
of the losses in the tail beyond the VaRα level is of interest, a
measure to understand how reliable the ESα is in representing the
losses above the VaRα threshold.

By construction, a higher value of the Gini index indicates that
a larger number of losses are present far in the right tail, while a
lower value indicates a distribution of losseswhich is concentrated
around the same values. Therefore, two distributions sharing the
same VaRα and ESα but with different tails are likely to have a
different Gini index.

Given our interest for the right tail and the large losses, the
Gini index in the formulation above is not optimal, for it takes into
account the entire support of the distribution.We need a truncated
Gini index, which measures the dispersion above the VaRα , so that
we can define a reliable measure of tail risk and ESα precision.

4. The concentration profile

The Lorenz curve L(x) is not a viable tool in everyday risk
management, because L(x) does not provide a unique value, but
rather a continuum of information, and a graphical inspection
of the Lorenz curve does not identify any particular distribution
(Kleiber and Kotz, 2003). Conversely, a concentration measure like
theGini index contains important information about the governing
distribution, but it is not sufficient to completely characterize the
right tail. There is no one-to-one mapping between the Gini index
and the Lorenz curve: the same Gini index may correspond to
different Lorenz curves, see Yitzhaki and Schechtman (2013) and
Appendix B for more details.

However, the Gini index can be the basic ingredient of a more
sophisticated tool, able to discriminate among different tail risk
profiles, and to provide a unique characterization of the distribu-
tion.We build this tool on a sequence of truncated Gini indices and
we call it Concentration Profile (CP). We first sort all observations in
the sample of losses in increasing order, and then recursively ex-
clude points at the left-hand side, computing the Gini index for the
remaining samples. In other words, we truncate the distribution of
losses at every single loss, from left to right, obtaining a collection
of exceedance distributions, and for each of these distributions we
compute the Gini index, which will be a truncated Gini index with
respect to the original distribution.

4.1. Mathematical construction

Let us introduce some notation.

Definition 4. Consider a positive random variable Y with distribu-
tion F (y) and right endpoint yF , where yF = sup{y : F (y) < 1}
(infinite or finite but very large), and a confidence level α ∈ [0, 1).
We call a risk subclass at level α the truncated support of F (y),
defined as

Sα =
[
F−1(α), yF

)
= [Q (α), yF ) .

4 As far as ESα is concerned, there are also issues related to back-testing (Chavez-
Demoulin et al., 2014; Du and Escanciano, 2016; Hull, 2012).

As α → 1, the left point of Sα approaches yF , therefore
{Sα}α∈[0,1] defines a decreasing nested sequence of subsets of the
support of the distribution F (y). If aVaRα is defined,we clearly have
Sα = [VaRα, +yF ).

For every α, let us define the truncated Lorenz curve Lα(x) as

Lα(x) =
L(α + (1 − α)x) − L(α)

1 − L(α)
, 0 ≤ α, x ≤ 1, (5)

where L(·) is the Lorenz curve. The full derivation of Lα(x) is avail-
able in Appendix C.

We can then define the truncated distance index

DT
α =

Lα(x) − Lpe

pLpi − Lpe


p

0 ≤ DT
α ≤ 1, (6)

and, setting p = 1, the truncated Gini index

G(α) = 1 − 2
∫ 1

0
Lα(x)dx

= 1 − 2
∫ 1

0

L(α + (1 − α)x) − L(α)
1 − L(α)

dx. (7)

In terms of VaRα and ESα , Eq. (7) can be re-written as

G(α) =
E(|Y1 − Y2| | Y1 ∧ Y2 > VaRα)

2ESα

∈ [0, 1].

The truncated Gini index G(α) inherits all the properties of the
usual Gini index introduced in Section 2, and is therefore ameasure
of the tail dispersion. High values of G(α), i.e. closer to 1, imply
that the losses in Sα are dispersed (e.g. most losses are around
VaRα , but a few are far away in the tail, well beyond ESα), resulting
in a persistent thickness of the tail in the subclass, and a lower
precision of the corresponding ESα , while values close to 0 suggest
that losses that are less dispersed within Sα , so that ESα tends to be
a reliablemeasure of the expected tail risk. Thiswayof readingG(α)
becomes more clear, if we give G(α) a probabilistic interpretation.
Using theMarkov inequality,weobtain the following bound,which
indicates how higher values of G(α) imply a higher probability of
loss dispersion:

P(|Y1 − Y2| > 2ESα) ≤ G(α) ≤ 1. (8)

Given the notion of truncated Gini index G(α), we introduce the
Concentration Profile, as follows.

Definition 5.Given a sequence of risk subclasses {Sα}α∈[0,1), we call
a Concentration Profile (CP) the sequence {G(α)}α∈[0,1).

Graphically speaking, a CP is obtained by plotting G(α) against
increasing values of α. The Concentration Profile is therefore con-
tained in the [0, 1] × [0, 1] square. Through the observation of
the behavior of its CP, we may distinguish features of the loss
distribution and the associated risk. In Fig. 2 the theoretical CP for
four main classes of loss distributions is shown: Pareto, lognormal,
Weibull and exponential (where exponential is just aWeibull with
shape parameter γ = 1).

Fig. 2 anticipates an interesting fact, whichwe further discuss in
the next subsection: the Pareto distribution is the only distribution
characterized by a constant CP, where the height of the line only
depends on the shape parameter of the distribution itself.

4.2. Characterization of the concentration profile

The CP uniquely identifies a distribution: if we know the ana-
lytical behavior of {G(α)}α∈[0,1), we can recover the corresponding
distribution function F (y). This can be done by exploiting the strict
relationship betweenG(α) and the quantile functionQ (α), and thus
F (y).
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Fig. 2. Theoretical Concentration Profiles for different distributions. Apart from the
exponential case, the parameters of the distribution influence the Concentration
Profile. For the Pareto distribution, the horizontal line is characteristic, but the
height of the line depends on the shape parameter.

Table 1
Theoretical Concentration Profiles for some loss distributions, here Γ (·, ·) is the
incomplete Gamma function Γ (a, b) =

∫
+∞

b e−xxa−1dx and erfc−1(x) is the inverse
error function.

Distribution Concentration Profile G(α)

Weibull G(α) =
−2−

1
γ Γ (1+ 1

γ ,−2 log(1−α))−(−1+α)Γ (1+ 1
γ ,− log(1−α))

(1−α)Γ (1+ 1
γ ,− log(1−α))

Lognormal G(α) =

∫ 1
α (−1+2x−α)e−

√
2σerfc−1(2x)dx

(1−α)
∫ 1
α e−

√
2σerfc−1(2x)dx

Exponential G(α) =
1

2−2 log(1−α)
Pareto G(α) =

1
(2ρ−1) for ρ ∈ (1, +∞)

Theorem 6. If G(α) is differentiable, then

Q (α) =
(1 − α)G′(α) − G(α) + 1

(1 − α)(1 + G(α))

× exp{−

∫
(1 − α)G′(α) − G(α) + 1

(1 − α)(1 + G(α))
dα}, (9)

where G′(α) =
dG(α)
dα and Q (α) is the quantile function of a general

distribution.

Theorem 6 is a restatement, using G(α), of the main result in
Nair et al. (2002), to which we refer for the proof. Examples of
Concentration Profiles, obtained via Eq. (7), are given in Table 1 for
different distributions.

Another property of every CP is that it represents a characteriz-
ing tool for specific classes of distributions. As anticipated in Fig. 2,
the shape of a CP can be used to discriminate among distributions.
In order to better understand this use of the CP, we identify some
limiting cases for light and fat tails.

We focus on the Generalized Pareto Distribution or GPD (Em-
brechts et al., 2003), which is a well-known distribution family
used in extreme value theory (de Haan and Ferreira, 2006), playing
an important role in defining the properties of tails. Formally, Z ≥

0 follows a one-parameter GPD if its distribution functionH is such
that

H(z) =

{
1 − (1 + ξz)−1/ξ ξ ̸= 0,
1 − e−z ξ = 0. (10)

As discussed in Embrechts et al. (2003), one can introduce a
more flexible location-scale version of the GPD, by replacing the
argument z by (z − ν)/β , with ν ∈ R and β > 0. However, for ease
of notation, in what follows we refer to Eq. (10) when we speak
about the GPD.

The GPD can be shown to be the limit distribution of a large
number of distribution tails, provided that (1) we move far to
the right (Embrechts et al., 2003; Pickands, 1975), setting a high
threshold defining the tail, and (2) some non-restrictive technical
conditions are met (Beirlant and Goegebeur, 2004; de Haan and

Ferreira, 2006; Gnedenko, 1943). This is known as the GPD approx-
imation.

Depending on the values of ξ , the GPD encompasses relevant
tail scenarios in risk management. For 0 < ξ < 1, we deal
with fat-tailed distributions with unbounded support, and fat-
tailed distributions with bounded support but very large and often
unknown right endpoint, theoretically less dangerous – having all
moments – but in practice as problematic as the first ones, for the
right endpoint is hardly observed in the data (we refer to Cirillo
and Taleb, 2016, for more details) and not easily estimated (Em-
brechts et al., 2003). We restrict our attention to ξ < 1 because for
ξ ≥ 1 the mean of the GDP is not finite, hence we cannot define
the Gini index. For ξ = 0, the GPD is conversely an exponential
distribution, therefore a thin-tailed non-risky case, which we can
use as a benchmark; loss distributions in the ξ = 0 class are for
example the lognormal and the Weibull. We here omit the case
ξ < 0, which deals with distributions with a finite, not large right
endpoint, like the Beta or the Uniform, not particularly relevant to
model losses (de Haan and Ferreira, 2006; Embrechts et al., 2003;
Kleiber and Kotz, 2003).

Theorem7. Consider the GPD, its Concentration Profile is given by the
following formula:

G(α) =

⎧⎪⎨⎪⎩
ξ

2 − (1 − α)ξ (−2 + ξ )(−1 + ξ ) − ξ
ξ ∈ (0, 1),

1
2 − 2 log(1 − α)

ξ = 0.
(11)

for α ∈ [0, 1).

For every α ∈ [0, 1), Eq. (11) tells us that:

• For the light-tailed domain with ξ = 0, G(α) exhibits a
decreasing behavior.

• For the fat-tailed domain with 0 < ξ < 1, as the shape
parameter ξ grows towards 1, the slope of the CP in Eq. (11)
tends to zero. For the special case of a purely fat-tailed dis-
tribution like the Pareto, we get the horizontal line in Fig. 2.
The Paretian CP is immune to changes in the truncation level
α and only depends on the tail parameter ρ (corresponding
to 1/ξ ), as also shown in Table 1.

When considering Paretian tails, the CP thus tells that risk does
not vary: Paretian losses domaintain their riskiness notwithstand-
ing the VaRα level we might be interested in, and this risk is natu-
rally higher than the fatter the tail, as also shown in Fig. 3a, where
smaller values of ρ (larger values of ξ ) correspond to a riskier CP,
with a higher constant level of G(α). Conversely, if we look at Fig. 2,
the lognormal, the Weibull and the exponential distributions all
show a decreasing CP, indicating that losses above a high values
of VaRα tend to be less dispersed. This is consistent with a known
result in extreme value theory: for light-tailed distributions, in the
ξ = 0 limiting case, as α → 1, ESα ≈ Varα (Chavez-Demoulin et
al., 2014; Embrechts et al., 2003).

Let us consider inmore detail the exponential CP, whose analyt-
ical formula is given in Table 1 and the full derivation inAppendix E.
It does not depend on any parameter, meaning that all exponential
distributions share the same profile. This feature is particularly
helpful when we use the CP as a goodness-of-fit tool: since the
exponential CP starts with G(0) = 0.5, for α = 0, and decreases
towards zero first convexly and successively concavely, with a
point of flex at α = 0.63, any actual loss distribution whose
empirical G(0) is far away from 0.5 cannot be of the exponential
type. This is a useful heuristic we can derive from the CP.

The exponential CP is also useful when dealing with Weibull
distributions (the exponential being a Weibull with shape param-
eter γ = 1). AnyWeibull distributionwith shape parameter γ > 1
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(a) Pareto CP. (b) Weibull CP. (c) Lognormal CP.

Fig. 3. Theoretical Concentration Profiles for the Pareto, the Weibull and the lognormal distributions, for different values of their relevant parameters.

has a CP which is below the exponential CP, without intersection,
while for γ < 1 the Weibull CP lies above the unique exponential
CP. This behavior agrees with theoretical results in distribution
theory, pointing out a phase transition in the Weibull distribution
between γ < 1 and γ > 1 (Kleiber and Kotz, 2003). In terms
of risk, when the underlying distribution is of the Weibull type,
we can read the values of γ < 1 as more risky than exponential,
and vice versa for γ > 1. In terms of heuristics, when dealing
with data (more details in Section 7), if the empirical CP intersects
the exponential distribution CP then the data is not likely from a
Weibull distribution.

Regarding the lognormal family, the corresponding CP also has
some relationship with the exponential distribution: for σ < 1,
the starting point of the lognormal CP is G(0) < 0.5; when σ > 1,
we have G(0) > 0.5. Compared to the Weibull CP, the lognormal
CP is flatter, indicating that risk tends to decrease more slowly
in the tail — in accordance with extreme value theory, where the
lognormal distribution is considered more risky than the Weibull
distribution (Embrechts et al., 2003; McNeil et al., 2015). To find a
lognormal CPwhich always lies below the exponential CP, without
intersection, we need σ < 0.5. To find a lognormal CP which does
not intersect the exponential CP from above, we need σ > 1.

While the CP may in theory exhibit any type of behavior, for
the most used loss distributions (see Kleiber and Kotz, 2003, for
a review) the relationship with the truncation level α is non-
increasing; a CP with increasing portions is only obtained by
mixtures, introducing bumps in the right tail. Additionally, the dis-
tributions discussed in this work are representative formany other
distributions, an example being the Gamma distribution, whose
behavior can be represented by a combination of the Weibull and
the exponential.

In Fig. 3, we show the theoretical CP of the Pareto, the Weibull
and the lognormal distributions for different values of their rele-
vant parameters.

5. The concentration map

A way of assessing the risk entailed in a given loss distribution
is to look at its CP: higher and slowly decreasing values of G(α),
for α ∈ [0, 1), indicate a persistent tail risk, so that the Expected
Shortfall may not give reliable information about the risky losses
above Value-at-Risk. However, the CP is based on a continuum
of points, which is not appealing for risk managers, that prefer
concise single measures (just like VaRα and ESα). In this section we
introduce a way of extracting risk information from a CP, creating
a tool which simplifies the assessment of risk: the Concentration
Map.

5.1. Risk drivers

The first step for constructing a Concentration Map for a given
loss distribution is to look for the main risk drivers of the corre-
sponding CP, i.e. the quantities summarizing most of the risk.

Definition 8.Given a Concentration Profile {G(α)}α∈[0,1), risk driver
r1 ∈ [0, 1] is given by its starting value: r1 = G(0).

The definition of r1 follows from the fact that, at least for
unimodal size distributions, the CP is a non-increasing function
of the truncation level α. Given different CPs with same behavior
except for their starting point, we expect the onewith a higherG(0)
to be riskier.

For example, consider the theoretical CP of a Pareto distribution
as in Fig. 3a and Table 1. Such a CP is a constant function of
parameter ρ ∈ (1, +∞), i.e. G(α) = G(0) for every α ∈ [0, 1).
Since dG(0)

dρ = −
2

(−1+2ρ)2
< 0, ∀ρ ∈ (1, +∞), we see that in the

Paretian case the higher the starting value of the CP, the lower the
value of ρ, and the fatter and more risky the loss distribution. The
same reasoning holds for any non-increasing CP.

Definition 9.Given a Concentration Profile {G(α)}α∈[0,1), risk driver
r2 ∈ [0, 1] is given by the difference between the risk driver
r1 = G(0), and G(α), with α → 1, i.e.,

r2 = lim
α→1

|G(0) − G(α)| .

From Theorem 7 we know that, for light-tailed distributions,
the CP converges to zero as α → 1. This does not necessarily
happen when the loss distribution is fat-tailed and moments can
be infinite. Measuring the gap between the initial and final values
of the CP is therefore another quantitative way of assessing the
fatness of the tail. In particular, the smaller the gap, the larger the
mass present in the tail, and the higher the probability of extreme
losses. In Fig. 4, we show a graphical representation of r1 and r2.

5.2. The map

Once identified themain risk drivers, we need to combine them
to rank different CPs, i.e. different loss distributions, on the basis of
their embedded risk. We look for a risk function R(r1, r2) : [0, 1]×
[0, 1] → [0, 1]which assigns a number in [0, 1] to the combination
of risk drivers, summarizing the riskiness of the corresponding CP.
This risk function must satisfy the following constraints, given the
interpretations of r1 and r2:
dR(r1, r2)

dr1
> 0 and

dR(r1, r2)
dr2

< 0. (12)

Let Γ be the set of functions R(x, y) : [0, 1] × [0, 1] → [0, 1]
that respect the constraints in Eq. (12). If we additionally impose
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Fig. 4. Risk drivers’ visualization with respect to a generic Concentration Profile.

the requirement of a non-increasing CP (i.e. dG(α)
dα ≤ 0), which is

the case for unimodal distributions used in risk management, we
reduce the set Γ to functions whose domain is the R2 simplex
with vertices [0, 0], [1, 1], [1, 0] since, under this additionally con-
straint, we have r1 ≤ r2.

Looking for a suitable risk function, we rely on well-known re-
sults fromutility and risk theory, e.g. Edwards (1992). For example,
we can choose a Cobb–Douglas risk function,

R(r1, r2) = ra1 (1 − r2)b with a, b ∈ R+. (13)

This function allows a risk manager to decide which risk driver
is relevant, by acting on the parameters a and b. The values of these
parameters can be based on historical data or expert judgments.
The choice of a Cobb–Douglas is motivated by its convenient prop-
erties in terms of risk-driver substitution, and the possibility of
deriving isorisk curves that are easy to interpret (Barucci, 2003;
Edwards, 1992). Other functions may be used as well.

Figs. 5a and 5b show two examples of Concentration Maps
based on the Cobb–Douglas risk function for different parameter
sets. Each map reads as follows: on the y-axis we find the values of
the first risk driver r1, while on the x-axis the values of limα→1G(α)
are given (in the picture, we choose α = 0.99 to have a few
observations in the tail). The second risk driver r2 is computed as
the absolute gap, and serves as input in the risk function R(r1, r2) =

ra1 (1 − r2)b, which induces a partial ordering on the Concentration
Map. Different combinations of values for the risk drivers may lead
to the same output for the risk function, as shown by the colored
isorisk curves in the graph.

Looking at the Concentration Maps in Figs. 5a and 5b, we ob-
serve some interesting facts:

• Every Pareto distribution with shape parameter ρ ∈ (1, ∞)
lies on thehypotenuse of themap. In particular, a Pareto(ρ ≈

1) corresponds to the point (1, 1), while a Pareto(ρ → +∞)
tends to (0, 0). This is because the CP associated to the Pareto
distribution is constant, so that the risk driver r2 = 0 (since
G(0) = limα→1G(α)), and the x-axis values for the map are
the same as those on the y-axis.

• Given their parameter-independent CP, all exponential dis-
tributions lie in the cell ( 1

2−2 log(1−α) ,
1
2 ), which we can indi-

cate as the exponential cell. The x−coordinate depends on
the chosen α level: for α = 0.99 the coordinates of the
exponential cell become (0.09, 0.5).

• On the basis of the previous two items, we draw the con-
clusion that any color on the map which is equal to the one
placed on the exponential cell or on the Pareto segment
will share the same risk, due to the isorisk property of the
Cobb–Douglas risk function (Edwards, 1992). For example,
the points placed on the hypotenuse, from (0.33, 0.33) to
(1, 1) — what we call the transition cells in Fig. 5a and 5b,

correspond to Pareto distributions with α ∈ (1, 2], whose
variance is not finite. The areas of the map sharing the same
color of a Pareto distribution with infinite variance will also
share the same risk. This is an important feature of the
Concentration Map as risk characterization tool.

6. Concentration adjusted expected shortfall

Within a given risk subclass Sα , the quantity G(α) provides a
measure of the precision of the ESα associated to the same subclass.
It seems therefore natural toweight the value ESα byG(α), to define
the Concentration Adjusted Expected Shortfall, or CAESα .

G(α) belongs to [0, 1], and, for α → 1, it tends to zero for low-
risk light-tailed distributionswhile it remains constant for Paretian
distributions; for light tails the variability of the losses decreases
quickly with the truncation level, while it is more persistent for fat
tails. Knowing that in general ESα grows in the truncation level,5
a question is whether the increase in the ESα can be compensated
by an increase in its precision, as measured by G(α). A high ESα is
not necessarily a problem, if it also becomes more representative
for the tail losses, so that tail risk decreases.

Definition 10. Given a Concentration Profile {G(α)}α∈[0,1), and a
sequence of Expected Shortfalls {ESα}α∈[0,1), the Concentration Ad-
justed Expected Shortfall is defined as

CAESα = {ESα · G(α)}α∈[0,1).

The CAESα thus adjusts the ESα for the variability of the corre-
sponding risk subclass Sα , and differently from the ESα sequence,
which is increasing for every distribution, it shows a diverse behav-
ior for different distributions. We identify three main situations:

lim
α→1

CAESα = ∞, (14)

lim
α→1

CAESα = c, (15)

and

lim
α→1

CAESα = 0, (16)

with c ∈ R.
The case in Eq. (14) indicates that the increase in the ESα is too

large to be compensated by a decrease in the variability, or that
the variability does not decrease quickly enough. This behavior
corresponds for example to the Pareto distribution with any value
of ρ ∈ (1, +∞), the Weibull distribution with γ < 1 and
lognormal distribution with σ ≥ 0.3. In the second and third cases
of Eqs. (15) and (16), the decrease in the variability is sufficient to
compensate for an increase of the ESα , and the value of the ESα thus
becomes representative for the tail losses, as α → 1. The situation
of Eq. (15) occurs for example for the exponential distribution,
while that of Eq. (16) manifests itself for Weibulls with γ > 1 and
lognormals with σ < 0.3.

An extra remark is to be made for the lognormal distribution.
Fig. 6b shows how the lognormal CAESα changes with σ : for σ ∈

(0.3, 0.7), the lognormal CAESα exhibits a unique u-shaped behav-
ior. This feature can be used in practice to rule out specific values
of the lognormal parameter σ when fitting distributions to data.

Fig. 6a presents plots of the theoretical behavior of the CAESα

for the Pareto, theWeibull and the exponential, while Fig. 6b deals
with the lognormal.

5 For example, it is known that for a Pareto distribution, the quantity ESα − VaRα

(also known as mean excess) increases linearly in the VaRα , according to van der
Wijk’s law (Cirillo, 2013).
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(a) a = 0.5, b = 0.5. (b) a = 0.2, b = 0.8.

Fig. 5. Concentration Maps, with underlying Cobb–Douglas risk functions of parameters a and b. The different points represent theoretical Concentration Profiles of useful
distributions: Pareto, exponential, Weibull and lognormal. α = 0.99 has been taken as empirical limit value for limα→1G(α).

(a) Pareto, Weibull and exponential. (b) Lognormal for different values of σ .

Fig. 6. Theoretical behavior of the Concentration Adjusted Expected Shortfall CAESα for different distributions.

As we shall see in the next section, the combination of CP
and CAESα can be used to better discriminate among Weibull and
lognormal distributions, also guessing the value of their shape
parameter, by looking at a limited number of graphs.

7. Applications

In this section we present some applications of the new tools
introduced. We start by generating data from two known distri-
butions and we show how the Concentration Profile can be used
as a goodness-of-fit tool to identify them. Then, we use two well-
known data sets as a basis for our analysis. Finally, in Section 7.3,
we show how the Concentration Profile may also find an applica-
tion in the field of extreme value theory, when one is interested in
defining the threshold above which fat tails may manifest them-
selves.

7.1. Lognormal or Pareto?

We start by generating two samples of size n = 500 from a
lognormal with parameters µ = 0 and σ = 1 (finite mean, finite
variance) and a Pareto with ρ = 1.5 (finite mean but infinite
variance). In Fig. 7 the histograms are shown.

Using the empirical Concentration Profile, it is possible to fit
the correct distribution. To estimate the empirical CP, notice that

the CP is basically a sequence of Gini indices computed on a de-
creasing number of ordered observations. Therefore, under normal
circumstances, no additional effort must be made in estimation
with respect to the classical Gini index, since no bias arises from
the truncation procedure. The left point of the domain where the
truncation occurs can be successfully estimated by the empirical
quantile q̂i:n. The estimation of the Concentration Profile (CP) can
therefore be performed using any existing estimator for the Gini
index Ĝ(i : n), with n being the total number of observations, and
i ∈ [1, n−1] the number of data points to be taken into account in
the estimation (Yitzhaki and Schechtman, 2013). For example, one
could use

Ĝ =

∑n
i=1

∑n
j=1

⏐⏐xi − xj
⏐⏐

2n
∑n

i=1 xi
. (17)

After ordering the observations from the smallest to the largest,
we obtain the CP by estimating n times the Gini index, each time
excluding the first n smallest observations. To get accurate esti-
mates, it is important to leave a sufficient number of observations
in the right tail, and we denote this number by k. The number
of ordered observations to spare depends on the underlying data
generating process. The fatter the tails, the more observations
should be left out the estimation cycle, and borrowing heuristics
from extreme value theory (Pickands, 1975), we set k between 1%
and 5% of the original ordered data points.
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Fig. 7. On the left, the histogram of 500 lognormally distributed data points with µ = 0 and σ = 1. On the right, the histogram of 500 Pareto distributed data points with
ρ = 1.5.

Fig. 8. Empirical Concentration Profile (dotted black line) with 95% and 99% bootstrapped confidence intervals (red dotted lines) compared to the theoretical Concentration
Profile (blue straight line). Confidence intervals are built using the standard deviation for the lognormal data and the mean absolute deviation for the Paretian ones. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

When estimating the Gini index, attention must be paid to
consistent estimates. According to Gastwirth (1972), the estimator
in Eq. (17) (as several others) is consistent and asymptotically nor-
mal if and only if the secondmoment of the data generating process
is finite. This assumption can be too stringent in risk management.

From Table 4 in Appendix Awe know that the Gini index for the
Pareto distribution is a continuous function of the shape parameter
ρ. Estimators for the shape parameter of the Pareto distribution
exist and do not require any assumption on the finiteness of the
second moment (Embrechts et al., 2003). Therefore when we sus-
pect an infinite variance, an estimator for the Gini index (and for
the Concentration Profile) can be derived from the tail parameter
ρ, by plugging the estimated ρ̂ in the theoretical expression of the
Gini index. The resulting estimator becomes Ĝ =

1
2ρ̂−1 , and to get

ρ̂ one can rely on maximum likelihood estimation (MLE) or other
techniques (Beirlant and Goegebeur, 2004; Embrechts et al., 2003).
Confidence intervals for the CP can be computed using resampling
techniques like bootstrap, jackknife or k-jackknife (Efron and Tib-
shirani, 1994; Efron, 1982).

Fig. 8 shows the results on the simulated data. In both cases we
observe that the theoretical CP is contained in the 95% confidence
interval obtained via bootstrap. For both the lognormal and the
Pareto distributions, the parameters have been estimated via MLE.
For the Paretian data, the (approximate) confidence intervals have
been obtained using the mean absolute deviation (MAD, defined
as E|X − E[X]| for a generic random variable X), because for
these data the theoretical secondmoment, and hence the standard
deviation, is not defined (ρ = 1.5). As known, the MAD is a

robust measure of variability, commonly used when the standard
deviation is not available (Konno and Yamazaki, 1991; Maronna
et al., 2006). Totally compatible results are also obtained by using
percentile bootstrap confidence intervals for the Paretian CP. Fig. 8
suggests the usefulness of the CP as a graphical tool for identifying
distributions.

To further demonstrate the ability of the CP in discriminating
among distributions, we repeat the previous exercise in a sim-
ulation experiment, generating two sets of 1000 samples (500
observations) from the same Pareto and lognormal distributions.
For each sample we check whether the theoretical CP (with its
parameter estimated on the sample) is strictly included in the
confidence intervals of the empirical CP (95% and 99%).

For the lognormal case, the empirical coverage is satisfactory,
being above 92%, i.e. for at least 92% of times the CP is able to
identify the lognormal behavior of data, and no crossing of the
confidence intervals is observed. Allowing for small deviations, like
touching or slightly crossing the confidence intervals, especially at
the right-hand side of the CP, the coverage can be improved, up to
the expected percentages.

For the Paretian case, conversely, the coverage is around 75%.
This seems unsatisfactory, but it can be justified by the fact that,
for ρ = 1.5, the variance of the Pareto is not defined, and a
sample of 500 observations may not be sufficient to correctly
estimate ρ, given the large fluctuations in the samples (Fontanari
et al.). Also in this case the empirical coverage can be improved
by allowing minor departures from the confidence intervals, but
always looking for an almost constant CP. However, and this is the
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(a) Danish insurance claims. (b) BMW losses.

Fig. 9. Histograms of the Danish insurance losses and of the BMW losses.

(a) Danish insurance claims. (b) BMW losses.

Fig. 10. Empirical Concentration Profiles with 95% and 99% bootstrapped confidence intervals (1000 samples). For the Danish insurance data (left), confidence intervals are
built using bootstrapping and theMAD as a robustmeasure of variability, while for the BMWdata (right) we use block-bootstrappingwith non-overlapping block of different
sizes (size 200 in the figure) and the standard deviation.

most important result, if instead of ρ = 1.5 we choose ρ = 2.1, so
that the theoretical variance is finite, then the empirical coverage
for the Pareto reaches the levels of the lognormal case. Similarly
if instead of 500 observations, we deal with 2000 or more data
points. The quality of the estimated shape parameter ρ̂ is therefore
fundamental: an unreliable ρ̂ can generate a theoretical Paretian
CP that is out of the confidence intervals, even if a visual inspection
of the CP plot shows a constant empirical CP. This is the most
common situation when the theoretical CP does not fall within the
bootstrapped confidence intervals, because of an unreliable ρ̂: one
is still able to observe Paretianity, but she should not rely on the CP
for a confirmation about ρ̂.

A last experiment is to use the lognormal samples of the simula-
tion study to check whether a mis-specified Weibull CP would fall
within the usual confidence intervals. What we get is an empirical
coverage of 0%: the theoretical Weibull CP never falls within the
confidence intervals, suggesting that the underlying data is not
Weibull distributed.

7.2. Real data example

We deal with two well-known data sets in the evir package
of the statistical language R, used in, e.g., de Haan and Ferreira
(2006), Embrechts et al. (2003) and McNeil et al. (2015). The first
contains 2167 Danish fire insurance claims (name: danish), and it

is a typical example of a Pareto loss distribution with estimated
shape parameter ρ ∈ (1, 2), so that we expect a finite mean but an
infinite variance (here the estimation of ρ is more reliable despite
the infinite variance, given the larger sample size). The second
data set contains 6146 daily losses and returns on the BMW share
price (name: BMW), but here we only consider the 2769 losses,
which are known to be lognormally distributed. The empirical loss
functions of the data are shown in Fig. 9 as histograms.

Fig. 10 shows the empirical CPs for the Danish insurance and
BMW data, together with their bootstrapped 95% and 99% con-
fidence intervals (on the basis of 1000 samples). In the case of
Paretian losses (Danish insurance data) the confidence intervals
are computed using the MAD. Regarding the BMW data, there is
temporal dependence in them (Embrechts et al., 2003). For this
reason, to not completely lose the dependence structure, a sim-
ple block-bootstrap approach (Davison and Hinkley, 1997) can be
used,6 with non-overlapping blocks of 50, 100 and 200 observa-
tions each (the last block only contains the residual observations
to be precise), observing no appreciable difference in the final
results depending on block size. We have bootstrapped the entire

6 More advanced approaches like the moving, the circular (Davison and Hinkley,
1997) or the stationary block bootstrap (Politis and Romano, 1994) could have been
used, andwe actually tried someof them, but our qualitative results about the shape
of the CP do not vary.
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(a) Danish insurance claims. (b) BMW losses.

Fig. 11. Empirical Concentration Adjusted ESα for the Danish insurance claims and the BMW share daily losses.

time series of profits and losses (6146 daily log returns), and only
after resampling we have selected the losses (obtaining 1000 data
sets of losses of variable size). Just resampling the losses would
have introduced non-trivial problems in the data, given that the
time series of losses is not equally spaced. These problems of time
dependence tend to disappear if we only focus on the very large
losses, as extreme value theory teaches us (de Haan and Ferreira,
2006), but it is better not to underestimate themwhen defining the
CP for the lower thresholds.

In Fig. 10a, the empirical CP of the fire insurance claim data is
almost constant. Given the insights in Section 4, we conclude that
the data is Pareto distributed. An additional check to the Paretianity
of the data set can be done using the CAESα , for which we expect a
diverging behavior. The result is presented in Fig. 11a.

For the BMW losses, the empirical CP exhibits the following
features: it starts around the point 0.5, it decreases rapidly towards
zero, and exhibits a change in the slope, being slightly convex at the
beginning and ending concave. By the results in Section 4, we can
exclude the Pareto distribution since the CP is not constant.

With the starting point of the BMWempirical CP around G(0) =

0.5, and recalling that the Weibull distribution starting at this
point coincides with the exponential, we can exclude Weibulls
with γ ̸= 1 from the candidates. Remaining possibilities are
either the exponential or the lognormal with shape parameter
σ → 1. To discriminate between these two options we use the
CAESα , given that its behavior for these distributions is different:
for the exponential the CAESα is constant, while for the lognormal
it exhibits the complex behavior in Fig. 6b. The results are shown
in Fig. 11b, where the CAESα diverges, suggesting lognormally
distributed data.

To double check the lognormal hypothesis, we fitted a lognor-
mal distribution to the data, using the method of moments for its
parameters, getting σ = 0.88 (with a s.e. of 0.0065). We then
used this value to generate the theoretical lognormal CP in Fig. 10b,
comparing it with the empirical one. The result is positive, as we
cannot observe any statistically significant difference.

Paretian data are usually much more risky than light-tailed
ones. However, comparing the VaRα and the ESα of the Danish and
the BMW data sets is useless since they measure different phe-
nomenawith different scales. Moreover, as stated before, VaRα and
ESα alone may be not indicative of the potential tail losses, since
they do not provide information about the dispersion. Computing
the truncated Gini index G(α) thus appears to be a solution, as it
provides information about the precision of the ESα and the length
of the tail beyond VaRα . Furthermore, being a scale free measure,
it can be used to compare the two loss distributions even if they
represent different phenomena.

Fig. 12. Risk evaluation of the Danish and BMW data sets via the Concentration
Map. Cobb–Douglas parameters: a = 0.3, b = 0.7.

Table 2 collects the VaRα , ESα , G(α), VMα and CVα for both data
sets, with α ∈ {0.9, 0.95, 0.99}. As expected, looking at VaRα and
at ESα , the insurance losses seem riskier than themarket ones, even
if the different scales do not allow for a proper quantification of the
term ‘‘riskier’’. Conversely, the scale free truncated Gini index gives
us the opportunity of an informative comparison: Danish losses are
definitelymore risky, since their Gini index is about twice the value
of that of BMW.

Both the variance-to-mean (VM) and the coefficient of variation
(CV) cannot be used for the Danish insurance losses, because of the
infinite variance. When they can be used, as for the BMW losses, it
seems more appropriate to use the CV, which – as the Gini index –
is scale free. For different values of α, the quantity VMα does not
vary sensibly, not providing useful insight.

To conclude, in Fig. 12 we show a comparison based on the
Concentration Map, with an underlying Cobb–Douglas with pa-
rameters a = 0.3 and b = 0.7. TheDanish fire claims are confirmed
to be more risky.

7.3. Identifying thresholds in extreme value theory

In the context of extreme value theory (Fisher and Tippett,
1928; Gnedenko, 1943; Pickands, 1975), a significant issue is the
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Table 2
Comparison of the main risk measures for the Danish and BMW data sets. For the insurance losses it is not possible to
compute the variance-to-mean ratio VM nor the coefficient of variation CV , for the second moment is not finite.

α Danish insurance losses BMW log-losses

VaRα ESα G(α) VMα CVα VaRα ESα G(α) VMα CVα

0.9 5.541 15.56 0.437 – – 0.022 0.034 0.201 0.007 0.444
0.95 9.972 24.08 0.390 – – 0.029 0.044 0.176 0.007 0.387
0.99 26.04 58.58 0.387 – – 0.049 0.070 0.157 0.007 0.306

(a) Empirical Concentration Profile of a sample from the mixture distribu-
tion in Eq. (18).

(b) Zipf plot (log–log plot of the survival function) for the same data.

Fig. 13. Threshold identification for Paretian tails using the empirical CP and the Zipf plot. In the CP figure, a dashed red line has been added to underline the constant
behavior of the Concentration Profile at the tail level. The blue crosses indicate the suggested thresholds for Paretianity.

estimation of the threshold above which the possible Paretian tail
starts. This has applications in the computation of the tail index,
the tail quantile and other relevant quantities (Embrechts et al.,
2003). However no unique methodology has been developed to
estimate the right threshold so far, but many different tools are
used to provide hints about the best value, see for example Cirillo
(2013). Here we propose the Concentration Profile as an additional
instrument.

As the Concentration Profile is a sequence of truncated Gini in-
dices computed for increasing thresholds, progressively discharg-
ing the previous observations, we expect that if the data exhibits
a Paretian right tail, then, from a certain α-level onward, the CP
should be approximately constant.

An example performed on simulated data will clarify this. In
Fig. 13a, the empirical CP of a sample (1000 points) from the
following mixture is plotted:

Ymix = βY + (1 − β)Z, (18)

where Y is a standard exponential distribution, Z is a Pareto dis-
tribution with ρ = 1.5, and the mixing parameter is β = 0.85.
By construction, this data set exhibits Paretian tails. In particular,
the Paretian behavior starts around quantile Q (0.825) = 3.2445
(denoted by a blue cross in Fig. 13a).

To assess the quality of our findings we can compare our
methodology with other techniques used in EVT to detect the tail
threshold (see Cirillo, 2013; Embrechts et al., 2003, for a review). In
Fig. 13b, we report the empirical survival function S(x) = 1 − F (x)
plotted in a log–log scale (Cirillo, 2013). From this plot, known as
Zipf plot,we see how the straight line behaviorwhich characterizes
the Paretian tail is present from approximately the same level
identified via the empirical CP. Similar results are found using the
mean-excess plot and other commonly used techniques (Cirillo,
2013).

To provide a further real-world example, let us consider 272
non-equally spacedmarket losses in a portfolio related to Goldman

Fig. 14. Histogram of losses for a portfolio on Goldman Sachs shares (272 observa-
tion in the period 2010–2013).

Sachs shares in the period 2010–2013. The histogram of the loss
distribution is shown in Fig. 14, and its Concentration Profile is
given in Fig. 15a. Once again, in order to identify the Paretian
threshold, we look for the point at which the concentration profile
starts exhibiting an approximately horizontal behavior. In Fig. 15a,
we identify this level as the quantile associated to α ≈ 0.79, as
Q (0.79) = 90.1827. To ease the identification we also provide a
dashed horizontal line representing the theoretical CP of a Pareto
distributionwith shape parameter ρ = 2.8, as estimated fromdata
using the GPD approximation and MLE. In Fig. 16a the last section
of the Concentration Profile is zoomed in, to show the horizontal
behavior. As before, Zipf plots are provided for comparison: the
Paretian threshold seems to be around the 79% quantile, as sug-
gested by the Concentration Profile.
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(a) Empirical Concentration Profile. (b) Zipf plot (log–log plot of the survival function).

Fig. 15. Empirical Concentration Profile and Zipf plot for the losses of the portfolio on Goldman Sachs shares. The dashed red line represents the theoretical Concentration
Profile generated by a Pareto with shape parameter ρ = 2.8 (ξ = 0.36). Blue crosses indicate the suggested thresholds for Paretianity.

(a) Empirical Concentration Profile. (b) Zipf plot (log–log plot of the survival function).

Fig. 16. Zoomed-in versions of both the empirical Concentration Profile and the Zipf plot of Fig. 15 to better visualize the right tail. The blue crosses indicate the suggested
thresholds for Paretianity.

8. Conclusions

In this work we introduced a novel approach to risk manage-
ment, based on the study of concentration measures of the loss
distribution. In particular, we showed that a truncated sequence
of Gini indices – the Concentration Profile – represents an accurate
way of assessing the variability of the larger losses, the precision
of common riskmanagementmeasures like the ESα , and tail risk in
general. Combining the Concentration Profile and standard results
from utility and risk theory, we have developed a Concentration
Map, which can be used to assess the risk attached to potential
losses on the basis of the risk profile of a risk manager. Finally, we
have used a sequence of truncated Gini indices as weights for the
ESα defining the so-called Concentration Adjusted Expected Shortfall,
a measure able to capture additional features of tail risk. Using
simulated and empirical data, we showed how to use our methods
in practice, from risk management to extreme value theory.

It is worth stressing that Concentration Profiles and Maps
may also be obtained by substituting the Gini index with other
measures of concentration, like the Pietra index (Pietra, 1915).
However, by preliminary studies we noticed that the increase in
mathematical complexity is not compensated by an improvement
in the applicability. Using an Occam’s razor principle, we therefore
preferred the simpler (and better known) Gini index.
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Appendix A. Gini indices and Lorenz curves of some notable
distributions

Table 3 contains some distributions often used for modeling
losses (Hull, 2012; Kleiber and Kotz, 2003). We collect them here,
as they are also useful for our discussion.

For the distributions in Table 3, we collect in Table 4 the cor-
responding closed form formulas for their Lorenz curves and Gini
indices.

Appendix B. Same Gini index but different Lorenz curves: an
example

In Fig. 17 two different Lorenz curves are shown. Their func-
tional forms are

L1(x) = (2x − 1)1{x≥0.5},
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Fig. 17. In the first graph Lorenz curve L1(x) is shown; in the second L2(x). The area shaded between Lpe and the two Lorenz curves is the same, giving the same Gini index,
however the asymmetry is clearly different.

Table 3
C.d.f., p.d.f., support and shape parameter of some of the most used distributions in risk management.

Distribution c.d.f p.d.f. Support Shape

Weibull F (y) = 1 − e−( y
λ
)γ f (y) =

γ

λ
( y

λ
)γ−1e−( y

λ
)γ y ∈ R+ γ ∈ R+

Lognormal F (y) = Φ( ln(y)−µ

σ
) f (y) =

1
σ
√
2π

e
−(ln(y)−µ)2

σ2 y ∈ R+ σ ∈ R+

Exponential F (y) = 1 − e−
y
λ f (y) = λe−yλ y ∈ R+ None

Pareto F (y) = 1 − ( y
y0
)−ρ f (y) =

ρyρ0
xρ−1 1{y≥y0} y ∈ [y0, +∞) ρ ∈ R+

Table 4
Gini index and Lorenz curve for the same distributions of Table 3.

Distribution Gini index Lorenz curve x ∈ [0, 1]

Weibull 1 − 2−
1
γ L(x) = 1 −

Γ (− log(1−x),1+ 1
γ )

Γ (1+ 1
γ )

Lognormal 2Φ( σ
√
2
) − 1 L(x) = Φ(Φ−1(x) − σ )

Exponential 1
2 L(x) = x + x(− log(1 − x)) + log(1 − x)

Pareto 1
2ρ−1 L(x) = 1 − (1 − x)

ρ−1
ρ

for the one on the left, and

L2(x) = 0.5x,

for that on the right.
Fixing x = 0.9, gives L1(x) = 0.8 and L2(x) = 0.45. This

means that according to L1 the top 10% losses account for 20% of
the total loss. These numbers change under L2, where the same top
10% accounts for 55% of all losses! In both cases, the Gini index is
the same: G1 =

1
2 = G2. Graphically speaking, it is sufficient to

notice that the two blue triangles in Fig. 17 occupy the same area.
This simple example shows that the Gini index alone is not able to
capture the dissimilarity between two loss distributions, despite
their very different risk profiles.

This example can also be used to heuristically justify the use
of the Concentration Profile. Let us truncate the original data at
x = 0.5, i.e. let us ignore the first 50% of the two samples. The
new Lorenz curves are given in Fig. 18.

Using Eq. (5) it is not difficult to prove that the two curves are
L0.51 (x) = x and L0.52 (x) =

1
3x. The second situation is more risky,

given the higher inequality. This is also reflected by the new Gini
indices, which now differ: G0.5

1 = 0 < G1 and G0.5
2 =

2
3 > G2. This

denotes a different risk concentration in the tails.

In a Concentration Profile, we perform the same computation
as above at every point of the support of the loss distribution. We
thus get a sequence of truncated Gini indices, which is informative
about tail risk.

Appendix C. Derivation for truncated Lorenz curve

In order to derive the Lorenz curve for truncated random vari-
ables, i.e. Eq. (5), recall that the p.d.f. of a random variable X left-
truncated on [u, +∞) is given by:

fu(x) =
f (x)

1 − F (u)
. (19)

where f (x) is the p.d.f. of X .
Let us define the Cumulative Mean Function M(t) for the trun-

cated random variable, i.e.

M(t) :=

∫ t
u

xf (x)
1−F (u)dx∫

+∞

u
xf (x)

1−F (u)dx
, (20)

with t ∈ [u, +∞), which becomes

M(t) :=

∫ t
u xf (x)dx∫

+∞

u xf (x)dx
.

The Lorenz curve is related to the Cumulative Mean Function
via the change of variable t = F−1(x). Applying this to Eq. (20), we
get the Lorenz curve associated to the truncated random variable
Xu on [u, +∞),

L∗

α(x) =

∫ x
α
F−1(u)du∫ 1

α
F−1(u)du

, (21)
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Fig. 18. The rescaled versions of the Lorenz curves in Fig. 17, where the upper 50% of the domain is considered. The shaded area is absent in the left side meaning that the
Gini index of L0.51 (x) is zero.

where α is the confidence level associated to truncation in u,
i.e. F (u) = α. The curve Lα(x) is therefore defined on the risk
subclass Sα .

Now, set z =
x−α
1−α

, and plug it in Eq. (21), so that

Lα(z) = L∗

α(z(1 − α) + α). (22)

Notice that Eq. (22) can be re-written as

Lα(z) = L∗

α(z(1 − α) + α) =

∫ z(1−α)+α

α
F−1(u)du∫ 1

α
F−1(u)du

. (23)

Recalling that the Lorenz curve associated with a random vari-
able with domain inR+ is given by Eq. (1), we can adjust the right-
hand side of Eq. (23) so that

Lα(z) =

∫ z(1−α)+α

α
F−1(u)du∫ 1

α
F−1(u)du

=

∫ z(1−α)+α

0 F−1(u)du −
∫ α

0 F−1(u)du∫ 1
0 F−1(u)du −

∫ α

0 F−1(u)du
. (24)

By dividing the right-hand side by
∫ 1
0 F−1(u)du∫ 1
0 F−1(u)du

, and by recalling

that L(α) =

∫ α
0 F−1(u)du∫ 1
0 F−1(u)du

and that L(1) = 1, we obtain

Lα(z) =
L(z(1 − α) + α) − L(α)

1 − L(α)
. (25)

Appendix D. Proof of Theorem 7

The quantile function of a one-parameter GPD is given by

F−1(v) =
(1 − v)−ξ

− 1
ξ

, 0 ≤ v ≤ 1. (26)

From this, using Eq. (1), we get

L(x) =

∫ x
0

(1−v)−ξ
−1

ξ
dv∫ 1

0
(1−v)−ξ −1

ξ
dv

. (27)

Solving (27), we obtain

L(x) =
1 − (1 − x)(1−ξ )

− x + ξx
ξ

, (28)

which is the closed form solution for the Lorenz curve of the
GPD.

We now obtain the truncated Lorenz curve by evaluating (28)
in α + (1 − α)x, that is Eq. (29) in Box I.

Using Eqs. (7) and (29), we observe G(α) given in Box II from
which we derive

G(α) =
ξ

2 − (1 − α)ξ (−2 + ξ )(−1 + ξ ) − ξ
. (30)

In order to prove that, in the case of a light-tailed distribution,
the CP is decreasing, we have to show that dG(α)

dα < 0 for every
α ∈ [0, 1). We observe

dG(α)
dα

=
1

2(α − 1)(log(1 − α) − 1)2
, (31)

which is always negative.
Left to show is that the CP of a fat-tailed distribution gets flatter

as ξ → 1, with limiting case the constant. It is sufficient to show

that: d( dG(α)dα )
dξ < 0 and limξ→1

dG(α)
dα = 0. Therefore

dG(α)
dα

= −
(ξ − 1)ξ 2(1 − α)ξ−1

(ξ − 2)
(
(ξ − 1)(1 − α)ξ + 1

)2 , (32)

whose limit for ξ → 1 goes to 0.

Appendix E. Derivation for the exponential distribution Con-
centration Profile

We here provide the derivation of the CP for the exponential
distribution. The derivation of the CP for other distributions only
involves the computation of somemore cumbersome integrals. For
the lognormal distribution the actually-usable solution can only be
obtained numerically.

Our aim is to use formula (7) to obtain a workable form for the
CP.

Recalling Table 4, the Lorenz curve for the exponential distribu-
tion is given by:

L(x) = x + x(− log(1 − x)) + log(1 − x).

In order to get its truncated version, we exploit formula (5), so
that Eq. (33) in Box III with α ∈ [0, 1].
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Lα(x) =
−(1 − α)ξ ((α − 1)(x − 1))−ξ

+ x(1 − α)ξ
(
((α − 1)(x − 1))−ξ

+ ξ − 1
)
+ 1

ξ (1 − α)ξ − (1 − α)ξ + 1
. (29)

Box I.

G(α) = 1 − 2
∫ 1

0

−(1 − α)ξ ((α − 1)(x − 1))−ξ
+ x(1 − α)ξ

(
((α − 1)(x − 1))−ξ

+ ξ − 1
)
+ 1

ξ (1 − α)ξ − (1 − α)ξ + 1
dx,

Box II.

Lα(x) =
α + (1 − α)x + (α + (1 − α)x)(− log(1 − (α + (1 − α)x))) + log(1 − (α + (1 − α)x)) − (α + α(− log(1 − α)) + log(1 − α))

1 − (α + α(− log(1 − α)) + log(1 − α))
,

(33)

Box III.

After some algebra we get

Lα(x) =
−x + log(1 − α) + (−1 + x) log((−1 + x)(−1 + α))

−1 + log(1 − α)
. (34)

We can now exploit Eq. (34) in formula (7), and we get

G(α) = 1 − 2
∫ 1

0

−x + log(1 − α) + (−1 + x) log((−1 + x)(−1 + α))
−1 + log(1 − α)

dx.

(35)

The integral in (35) can be solved directly, thus getting the
formula provided in Table 1.

Appendix F. Supplementary materials

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.insmatheco.2017.11.003.
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