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Abstract

In this paper, we consider the numerical solution of a two factor model for the valuation of a non callable
defaultable bond which pays coupons at certain given dates. Such a model under consideration is the
Jump to Default Constant Elasticity of Variance (JDCEV) model. The stochastic factors are the risk
free interest rate and the stock price. Moreover, we take into account the possibility of negative interest
rates. From the mathematical point of view, the valuation problem requires the numerical solution of two
partial differential equation (PDE) problems for each coupon and with maturity those coupon payment
dates. In order to solve these PDE problems, we propose appropriate numerical schemes based on a
Crank-Nicolson semi-Lagrangian method for time discretization combined with biquadratic Lagrange
finite elements for space discretization. Once the numerical solutions of the PDEs are obtained, a kind
of post-processing is carried out in order to achieve the value of the bond. This post-processing includes
the computation of an integral term which is approximated by using the composite trapezoidal rule.
Finally, we present some numerical results for real market bonds issued by different firms in order to
illustrate the proper behaviour of the numerical schemes.

Keywords: coupon bond, default risk, JDCEV model, PDE, semi-Lagrangian method, biquadratic
Lagrange finite elements.

1. Introduction

Default risk can be modelled by using two different approaches: the structural approach and the reduced-
form approach. For more information about the history, advantages and drawbacks of each one of the
two approaches we refer the readers to the introduction of [1, 8, 9]. In the structural method default
occurs when the firm asset value reaches some lower barrier, whereas in the reduced-form approach, the
default event is assumed to be unpredictable and governed by a default intensity process that could be
either deterministic or stochastic. Moreover, in the reduced-form approach the default event can occur
without any correlation with the firm value. In this work we consider the reduced-form approach.

In the literature there are several papers devoted to default risk modelling by using the two different
approaches. On one hand, the first approach is taking into consideration in [1] where the author proves
an exact formula for the valuation of defaultable coupon bonds by generalizing the one derived in [13].
On the other hand, both approaches are combined in [9] also to price defaultable bonds.

The main objective of this paper is to obtain the price of a defaultable coupon bond under the extended
Jump to Default Constant Elasticity of Variance (JDCEV) model proposed in [7], also considering
the possibility of incorporating negative interest rates which is introduced in [11]. The JDCEV model
was first introduced in [7] as a hybrid credit and equity model, although only taking into account
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constant positive interest rates. In this work we assume that the interest rates dynamics is governed
by a stochastic process which takes into account negative interest rates as in [11]. The incorporation
of negative interest rates results more realistic according to the current situation of real markets. As it
was pointed out before, this model can be set in the framework of the reduced-form approaches. More
precisely, in the present paper we define the instantaneous volatility of the stock price as a constant
elasticity of variance (CEV) process and we assume that the default intensity is an affine function of
the instantaneous variance of the underlying stock.

From the mathematical point of view, the valuation problem of a defaultable coupon bond can be posed
in terms of a sequence of partial differential equation (PDE) problems, where the underlying stochastic
factors are the interest rates and the stock price. Moreover, the stock price follows a diffusion process
interrupted by a possible jump to zero (default), as it is indicated in [7]. In order to compute the value
of the bond we need to solve two partial differential equation problems for each coupon and with ma-
turity those coupon payment dates. Concerning the numerical solution of those PDE problems, after a
localization procedure to formulate the problems in a bounded domain and the study of the boundaries
where boundary conditions are required following the ideas introduced in [15], we propose appropriate
numerical schemes based on a Crank-Nicolson semi-Lagrangian method for time discretization com-
bined with biquadratic Lagrange finite elements for space discretization. The numerical analysis of this
Lagrange-Galerkin method has been addressed in [3, 4]. Once the numerical solution of the PDEs is
obtained, a kind of post-processing is carried out in order to achieve the value of the bond. This post-
processing includes the computation of an integral term which is approximated by using the composite
trapezoidal rule.

This paper is organized as follows. In Section 2, we describe the two stochastic factors (i.e. the interest
rate and the defaultable stock price) that are involved in the model, and we state the PDE problem that
governs the valuation of non callable defaultable coupon bonds. In Section 4, we formulate the pricing
problem in a bounded domain after a localization procedure and we impose appropriate boundary
conditions. Then, we introduce the discretization in time of the problem by using a Crank-Nicolson
characteristic scheme, and we state the variational formulation of the problem in order to apply finite
elements. Finally, in Section 5 we present some numerical results to illustrate the good performance of
the numerical methods and we finish with some conclusions in Section 6.

2. Mathematical modelling

2.1. Stochastic underlying variables

A non callable defaultable coupon bond is a financial derivative product, the underlying variables of
which are the interest rate and the defaultable stock price. The interest rate at time t, rt, is assumed to
be stochastic and its dynamics under a risk neutral probability measure is driven by the Vasicek model
[17], in which the spot rate is governed by the Ornstein-Uhlenbeck process:

drt = κ(θ − rt)dt + δ dW 1
t , (1)

where κ > 0 is the speed of adjustment in the mean reverting process, θ > 0 is the long-term mean
of the short-term interest rate, δ > 0 is the interest rate volatility and W 1

t is the standarized Wiener
process for the interest rate. Note that negative interest rates are taken into consideration with this
model contrary to other interest rate dynamics such as CIR model [10]. Note that the possibility of
negative interest rates results more realistic according to the current situation of the markets.

In the JDCEV model we assume that the local volatility of the stock is given by

σ(t, St) = a(t)Sβt ,

where St denotes the stock price at time t, β < 0 is the elasticity parameter and a(t) > 0 is the time
dependent volatility scale function. Moreover, the default intensity can be written in terms of the stock
volatility and the stock price in the following way

λ(t, St) = b(t) + c σ(t, St)
2 = b(t) + c a(t)2 S2β

t , (2)
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where b(t) ≥ 0 is a deterministic non-negative function of time and c > 0 governs the sensitivity of the
default intensity with respect to the volatility, as it is indicated in [7]. The other source of uncertainty, the
predefaultable stock price at time t, St, under a risk neutral probability measure satisfies the following
stochastic differential equation:

dSt = (rt + λ(t, St))Stdt + σ(t, St)St dW
2
t . (3)

where W 2
t is the standarized Wiener process for the stock price. Both Wiener processes, W 1

t and W 2
t

can be correlated according to dW 1
t dW

2
t = ρdt, where ρ denotes the instantaneous correlation coefficient

such that | ρ |< 1. Moreover, in this model the time of default denoted by ξ has two parts. On one hand,
we can define the predictable part as ξ0 = inf{t ≥ 0 : St = 0}, whereas on the other hand the random
part ξ̃ is given by the following expresion:

ξ̃ = inf

{
t ≥ 0 :

∫ t

0

λ(t, St) ≥ e
}
, (4)

where e is an exponential random variable e ∼ Exp(1). Thus, the time of default is defined as ξ = ξ0∧ ξ̃.
Finally, the defautable stock price is given by St = {St1{ξ>t}}.

2.2. PDE formulation

In this work we consider the valuation of a non callable defaultable bond with the possibility of paying
a series of coupons at given dates ti, for i = 1, ...,M , where M is the number of coupons and T = tM
is the maturity of the bond. At maturity, the bond holder receives the face value (FV) plus the last
coupon. Thus, let us denote by cpi the amount of money paid at coupon payment date ti. This amount
is computed by multiplying the coupon rate, the frequency of coupon payments and the FV. Having this
in view, the value of a non callable defaultable coupon bearing bond at time t = t0 = 0, V (0, St, rt;T ),
understood as the value of the future coupon payments and the face value of the bond, is given by

V (0, St, rt;T ) = FV

[
M∑
i=1

cpi E
[
exp

(
−
∫ ti

0

(ru + λ(u, Su)) du

)]
+ E

[
exp

(
−
∫ T

0

(ru + λ(u, Su)) du

)]

+η

(
1− E

[
exp

(
−
∫ T

0

(ru + λ(u, Su)) du

)]
−
∫ T

0

E
[
exp

(
−
∫ τ1

0

(ru + λ(u, Su)) du

)
rτ1

]
dτ1

)]
,

(5)

where η is the recovery rate in case of default. An analysis of the recovery rate by industrial sector and
debt seniority is carried out in [2].

Next, if we denote by

u1(0, St, rt; ti) = E
[
exp

(
−
∫ ti

0

(ru + λ(u, Su)) du

)]
,

u1(0, St, rt;T ) = E

[
exp

(
−
∫ T

0

(ru + λ(u, Su)) du

)]
,

u2(0, St, rt; τ1) = E
[
exp

(
−
∫ τ1

0

(ru + λ(u, Su)) du

)
rτ1

]
,

the expression of the bond value (5) can be written equivalently as

V (0, St, rt;T ) = FV

[
M∑
i=1

cpi u1(0, St, rt; ti) + u1(0, St, rt;T )

+η

(
1− u1(0, St, rt;T )−

∫ T

0

u2(0, St, rt; τ1) dτ1

)]
. (6)
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Moreover, applying the Feynman-Kac formula (see [16], for example) and by using the change of variable
yt = rt exp(κt), u1 and u2 are solutions of the Cauchy problem{

L [u(t, S, y)] = 0, t < T1, (S, y) ∈ (0, ∞)× (−∞, ∞),
u(T1, S, y) = h(y), (S, y) ∈ (0, ∞)× (−∞, ∞),

(7)

with h(y) = 1 for u = u1 or h(y) = exp(−κT1)y for u = u2, respectively. Moreover, the operator L is
defined as follows

L[u] = ∂tu+
1

2
σ2(t, S)S2 ∂SSu+ ρδσ(t, S) exp(κt)S ∂Syu+

1

2
δ2 exp(2κt) ∂yyu

+ (exp(−κt)y + λ(t, S))S ∂Su+ κθ exp(κt) ∂yu− (exp(−κt)y + λ(t, S))u. (8)

3. Existence of solutions

In this section, we aim to prove existence of a “local” solution to the Cauchy problem (7). For this
purpose, let X be the logarithm of the pre-defaultable stock price, i.e. Xt = logSt, t ∈ [0, T ]. Our model
becomes 

St = S0e
Xt1{ξ>t} S0 > 0

drt = κ(θ − rt)dt+ δW.
1
t

dXt = (rt − 1
2σ(t,Xt)

2 + λ(t,Xt))dt+ σ(t,Xt)dW
2
t

dW 1
t dW

2
t = ρdt,

(9)

with σ(t, x) = a(t)eβx and λ(t, x) = b(t) + cσ(t, x)2. The correspondent infinitesimal generator is the
operator L defined as

L = ∂t +
1

2
σ2(t, x) ∂xx + ρδσ(t, x) ∂xr +

1

2
δ2 ∂rr

+

(
r − 1

2
σ(t, x) + λ(t, x)

)
∂x + κ (θ − r) ∂r − (r + λ(t, x)) (10)

= ∂t +
1

2
〈Σ∇,∇〉+ 〈µ,∇〉+ γ (11)

where

Σ (t, x, r) =

(
σ2 (t, x) ρδσ (t, x)
ρδσ (t, x) δ2

)
, µ (t, x, r) =

(
r − 1

2σ
2 (t, x) + λ (t, x)
κ (θ − r)

)
,

γ (t, x) = − (r + λ (t, x)) . (12)

Operator L is only locally uniformly parabolic in the sense that, for any ball

OR :=
{

(x, r) ∈ R2 | |(x, r)| < R
}

;

the coefficients of L satisfy the following conditions:

(H1) The matrix Σ(t, x, r) is positive definite, uniformly with respect to (t, x, r) ∈ (0, T ]×OR.

(H2) The coefficients Σ, µ, γ are bounded and Hölder-continuous on (0, T ]×OR.

Under these conditions we can resort on the recent results in [? ], Theor. 2.6, or [? ], Theor.1.5, about
the existence of a local density for the process (X, r).

Theorem 3.1. For any R > 0, the process (X, r) has a local transition density on OR, that is a non-
negative measurable function Γ = Γ(t, x, r;T, y, s) defined for any 0 < t < T , (x, r) ∈ R2 and (y, s) ∈ OR
such that, for any continuous function h = h(x, r) with compact support in OR, we have

u(t, x, r) := Et,x,r [h(XT , rT )] =

∫
OR

Γ(t, x, r;T, y, s)h(y, s)dyds

and u satisfies {
Lu(t, x, r) = 0, (t, x, r) ∈ [0, T )×OR,
u(T, x, r) = h(x, r) (x, r) ∈ OR.

(13)
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Problem (13) can be used for numerical approximation purposes. Notice however that (13) does not
posses a unique solution due to the lack of lateral boundary conditions. Nevertheless, numerical schemes
can be implemented imposing artificial boundary conditions and the result which guarantees the validity
of such approximations is the so-called principle of not feeling the boundary. A rigorous statement of
this result can be found in [? ], Appendix A, or [? ], Lemma4.11.

4. Numerical methods

In order to obtain a numerical approach of the value of a non callable defaultable coupon bond we need
to solve the Cauchy problem (7) for u = u1 and u = u2 with maturity T1 = ti for i = 1, ...,M , that
is each coupon payment date for both cases. Once these problems are solved, the value of the bond is
given by expression (6) in which appears an integral term. That integral term will be approximated
by means of the classical composite trapezoidal rule. For the numerical solution of the PDE problem,
we propose a Crank-Nicolson characteristics time discretization scheme combined with a piecewise bi-
quadratic Lagrange finite element method. This Lagrange-Galerkin method has been analyzed in [3, 4]
for time and space discretization. More recently, it has been applied to the valuation of pension plans
without and with early retirement in [5] and [6], respectively. Thus, in order to apply this numerical
technique, first a localization procedure is used to cope with the initial formulation in an unbounded
domain.

4.1. Localization procedure and formulation in a bounded domain

In this section we replace the unbounded domain by a bounded one. In order to determine the required
boundary conditions for the associated PDE problem we follow [15] which is based on the theory
proposed by Fichera in [12]. Let us introduce the following notation:

x0 = t, x̃1 = S and x̃2 = y. (14)

For this purpose, let us consider both x̃∞1 and x̃∞2 to be large enough suitably chosen real numbers in
order to the solution in the region of interest is not affected by the truncation of the domain. Let

Ω∗ = (0, x∞0 )×
(

1

x̃∞1
, x̃∞1

)
× (−x̃∞2 , x̃∞2 )

with x∞0 = T1. Additionally, we make the changes of variables x1 = x̃1 − 1
x̃∞
1

, x2 = x̃2 + x̃∞2 , x∞1 =

x̃∞1 − 1
x̃∞
1

and x∞2 = 2x̃∞2 , which leads to replace the bounded domain Ω∗ by the following one:

Ω = (0, x∞0 )× (0, x∞1 )× (0, x∞2 )

Then, let us denote the Lipschitz boundary by Γ = ∂Ω such that Γ =
⋃2
i=0(Γ−i ∪ Γ+

i ), where

Γ−i = {(x0, x1, x2) ∈ Γ | xi = 0}, Γ+
i = {(x0, x1, x2) ∈ Γ | xi = x∞i }, i = 0, 1, 2.

Then, the operator defined in (8) can be written in the form:

L[u] =

2∑
i,j=0

bij
∂2u

∂xixj
+

2∑
j=0

bj
∂u

∂xj
+ b0u, (15)
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where the involved data are given by

B = (bij) =


0 0 0

0 1
2a

2(t)
(
x1 + 1

x̃∞
1

)2β+2
1
2ρδa(t)

(
x1 + 1

x̃∞
1

)β+1

exp(κt)

0 1
2ρδa(t)

(
x1 + 1

x̃∞
1

)β+1

exp(κt) 1
2δ

2 exp(2κt)

 , (16)

b = (bj) =

 1(
exp(−κt)(x2 − x̃∞2 ) + λ

(
t, x1 + 1

x̃∞
1

))(
x1 + 1

x̃∞
1

)
κθ exp(κt)

 , (17)

b0 = −
(

exp(−κt)(x2 − x̃∞2 ) + λ

(
t, x1 +

1

x̃∞1

))
. (18)

Thus, following [15], in terms of the normal vector to the boundary pointing inward Ω, m =
(m0,m1,m2), we introduce the following subsets of Γ:

Σ0 =

x ∈ Γ/

2∑
i,j=0

bijmimj = 0

 , Σ1 = Γ− Σ0,

Σ2 =

x ∈ Σ0/

2∑
i=0

bi − 2∑
j=0

∂bij
∂xj

mi < 0

 .

As indicated in [15] the boundary conditions at Σ1
⋃

Σ2 for the so-called first boundary value problem
associated with (15) are required. Note that Σ1 = {Γ−1 , Γ+

1 , Γ−2 , Γ+
2 } and Σ2 = {Γ+

0 }. Therefore, in
addition to a final condition (see section 2.2), we need to impose boundary conditions on Γ−1 , Γ+

1 , Γ−2
and Γ+

2 . Next, we will impose Dirichlet conditions on Γ−1 , Γ−2 and Γ+
2 , whereas on Γ+

1 we will impose a
homogeneous Neumann condition.

Taking into account the previous change of spatial variable and making the change of time variable τ =
T1−t, we write the equation (7) in divergence form in the bounded spatial domain Ω = (0, x∞1 )×(0, x∞2 ).
Thus, the initial boundary value problem (IBVP) takes the following form:

Find u : [0, T1]× Ω→ R such that

∂τu−Div(A∇u) + v · ∇u+ lu = f in (0, T1)× Ω , (19)

u(0, .) = h(x2 − x̃∞2 ) in Ω, (20)

u = exp

(
−
∫ T1

T1−τ

(
exp(−κũ)(x2 − x̃∞2 ) + λ

(
ũ, x1 +

1

x̃∞1

))
dũ

)
h(x2 − x̃∞2 ) on (0, T1)× Γ−1 , (21)

∂u

∂x1
= 0 on (0, T1)× Γ+

1 , (22)

u = exp

(
−
∫ T1

T1−τ

(
exp(−κũ)(x2 − x̃∞2 ) + λ

(
ũ, x1 +

1

x̃∞1

))
dũ

)
h(x2 − x̃∞2 ) on (0, T1)× Γ−2 , (23)

u = exp

(
−
∫ T1

T1−τ

(
exp(−κũ)(x2 − x̃∞2 ) + λ

(
ũ, x1 +

1

x̃∞1

))
dũ

)
h(x2 − x̃∞2 ) on (0, T1)× Γ+

2 . (24)

For problem (19)-(24), the diffusion matrix A, the velocity field v, the reaction function l and the second
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member f are defined as follows:

A =

 1
2
a2(T1 − τ)

(
x1 + 1

x̃∞1

)2β+2
1
2
ρδa(T1 − τ)

(
x1 + 1

x̃∞1

)β+1

exp(κ(T1 − τ))

1
2
ρδa(T1 − τ)

(
x1 + 1

x̃∞1

)β+1

exp(κ(T1 − τ)) 1
2
δ2 exp(2κ(T1 − τ))

 ,

v =

 1
2
a2(T1 − τ)(2β)

(
x1 + 1

x̃∞1

)2β+1

−
(

exp(−κ(T1 − τ)) (x2 − x̃∞2 ) + λ
(
T1 − τ, x1 + 1

x̃∞1

))(
x1 + 1

x̃∞1

)
1
2
ρδa(T1 − τ)(β)

(
x1 + 1

x̃∞1

)β−1

exp(κ(T1 − τ))− κθ exp(κ(T1 − τ))

 ,

l = exp(−κ(T1 − τ))(x2 − x̃∞2 ) + λ

(
T1 − τ, x1 +

1

x̃∞1

)
,

f = 0.

4.2. Time discretization

The method of characteristics is based on a finite differences scheme for the discretization of the material
derivative, i.e., the time derivative along the characteristic lines of the convective part of the equation (19). The
material derivative operator is given by

D

Dτ
= ∂τ + v · ∇.

For a brief description of the method, we first define the characteristics curve through x = (x1, x2) at time τ̄ ,
X(x, τ̄ ; s), which satisfies:

∂

∂s
X(x, τ̄ ; s) = v(X(x, τ̄ ; s)), X(x, τ̄ ; τ̄) = x. (25)

In order to discretize in time the material derivative in the Cauchy problem (19), let us consider a number of
time steps N , the time step ∆τ = T/N and the time mesh points τn = n∆τ, n = 0, 1

2
, 1, 3

2
, . . . , N .

The material derivative approximation by the characteristics method for both problems is given by:

Du

Dτ
=
un+1 − un ◦Xn

∆τ
,

where u = u1, u2 and Xn(x) = X(x, τn+1; τn). In this case, the solution of (25) are not computed analytically.
Instead, we consider numerical ODE solvers to approximate the characteristics curves (see [3], for example).
More precisely, in this work we employ the second order Runge-Kutta method.

Next, we consider a Crank-Nicolson scheme around
(
X(x, τn+1; τ), τ

)
for τ = τn+ 1

2 . So, the time discretized
equation for u = u1, u2 can be written as follows:

Find un+1 such that:

un+1(x)− un(Xn(x))

∆τ
− 1

2
Div(A∇un+1)(x)− 1

2
Div(A∇un)(Xn(x))

+
1

2
(l un+1)(x) +

1

2
(l un)(Xn(x)) = 0.

(26)

In order to obtain the variational formulation of the semi-discretized problem, we multiply (26) by a suitable
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test function, integrate in Ω, use the classical Green formula and the following one [14]:∫
Ω

Div(A∇un)(Xn(x))ψ(x)dx =

∫
Γ

(∇Xn)−T (x)n(x) · (A∇un)(Xn(x))ψ(x)dAx

−
∫

Ω

(∇Xn)−1(x)(A∇un)(Xn(x)) · ∇ψ(x)dx

−
∫

Ω

Div((∇Xn)−T (x)) · (A∇un)(Xn(x))ψ(x)dx.

(27)

Note that, due to the characteristics curves can not be obtained analytically, the terms (∇Xn)−1(x) and
Div((∇Xn)−T (x)) in (27) are replaced by the following approximations (see [3] for more detail):

(∇Xn)−1(x) = I(x) + ∆τLn(Xn(x)) +O(∆τ2),

Div((∇Xn)−T (x)) = ∆τ ∇Div (vn(Xn(x))) +O(∆τ2),

where L = ∇v.

After the previous steps, we can write a variational formulation for the time discretized problem as follows:

Find un+1 ∈ H1(Ω) for all ψ ∈ H1(Ω) such that ψ = 0 on Γ−1 , Γ−2 and Γ+
2 :

1

∆τ

∫
Ω

un+1(x)ψ(x)dx +
1

2

∫
Ω

(A∇un+1)(x) · ∇ψ(x)dx +
1

2

∫
Ω

(lun+1)(x)ψ(x)dx

=
1

∆τ

∫
Ω

un(Xn(x))ψ(x)dx− 1

2

∫
Ω

(A∇un)(Xn(x)) · ∇ψ(x)dx

−∆τ

2

∫
Ω

Ln(Xn(x))(A∇un)(Xn(x)) · ∇ψ(x)dx− 1

2

∫
Ω

(lun)(Xn(x))ψ(x)dx

−∆τ

2

∫
Ω

∇Div (vn(Xn(x))) · (A∇un)(Xn(x))ψ(x)dx

+
1

2

∫
Γ

(I(x) + ∆τLn(Xn(x)))Tn(x) · (A∇un)(Xn(x))ψ(x)dAx +
1

2

∫
Γ+
1

a12(x)
∂u

∂x2
(x)ψ(x)dAx,

(28)

where a12 is the corresponding coefficient of the diffusion matrix A.

4.3. Finite elements discretization

For the spatial discretization we consider {τh}, a quadrangular mesh of the domain Ω. Let (T2,Q2,ΣT2) be a
family of piecewise quadratic Lagrangian finite elements, where Q2 denotes the space of polynomials defined in
T2 ∈ τh with degree less or equal than two in each spatial variable and ΣT2 the subset of nodes of the element
T2. More precisely, let us define the finite elements space uh by

uh = {φh ∈ C0(Ω) : φhT2
∈ Q2, ∀T2 ∈ τh}, (29)

where C0(Ω) is the space of piecewise continuous functions on Ω.

4.4. Composite trapezoidal rule

In order to obtain the value of the bond at origination by means of expression (6) the computation of an integral
term is required. The approximation of this integral is carried out by using a suitable numerical integration
procedure. More precisely, we employ the classical composite trapezoidal rule with M + 1 points, where M is
the number of coupons, in the following way:∫ T

0

u2(0, St, rt; τ1)dτ1 ≈
h

2

[
u2(0, St, rt; 0) + 2

M−1∑
j=1

u2(0, St, rt; kj) + u2(0, St, rt;T )

]
(30)

where h = T
M

, kj = jh for j = 1, ...,M − 1 and u2(0, St, rt; 0) = r0.

8



5. Numerical results

In order to show the good performance of the numerical methods explained in Section 4, we present some
numerical results. In the following examples, the value of some of the parameters involved in the underlying
factors are taken from the literature, in particular from [11] where the authors calibrate the model parameters
to market data. More precisely, first the interest rate model is calibrated to zero-coupon bonds (ZCB) and next
the model is calibrated to CDS spreads whose price is obtained by means of an asymptotic expansion method.

In both examples, the number of elements and nodes of the finite element meshes employed in the numerical
solution of the problems are shown in Table 1.

5.1. Example 1

First, we consider the simple case of the valuation of default-free zero-coupon bonds with different maturities. In
this setting, the valuation problem is reduced to a one-factor model. The purpose of this example is to compare
the value of the bonds we obtain with the market zero-coupon curve. In order to obtain the value of the bonds,
we solve the IBVP (19) with initial condition h = 1 and only taking into account as underlying factor the
interest rate. The value of the parameters involved in the interest rate model are the ones collected in Table 2.
The values of the zero-coupon curve and the approximated ones obtained by solving the here proposed model
are presented in Table 3. For the numerical solution we consider Mesh 64 and the time step ∆τ = 1

360
(one day).

Number of elements Number of nodes
Mesh 4 16 81
Mesh 8 64 289
Mesh 16 256 1089
Mesh 32 1024 4225
Mesh 64 4096 16641

Table 1: Different finite element meshes (number of elements and nodes).

Parameters of the defaultable stock price model
a1 = 0.0337851
a2 = 0.0523625
b1 = 0.0026639
b2 = 0.0027968
c = 0.0435673
β = −0.268496

Parameters of the interest rate model
κ = 0.04520533766268042
δ = 0.02146900332086033
θ = 0.10334921942765922

Correlation coefficient
ρ = 0.0

Initial conditions
S0 = 1.0

r0 = −0.009159871729892612

Table 2: Parameters of the model for the UBS bond.
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Maturity (years) Market ZCB Model ZCB
1 1.00229 1.006751
2 1.00372 1.009062
3 1.00333 1.007495
4 1.00099 1.002601
5 0.995825 0.994902
6 0.987805 0.984889
7 0.976833 0.973024
8 0.963223 0.959738
9 0.947687 0.945429
10 0.932845 0.930463

Table 3: Market and model values of the ZCB.

5.2. Example 2

Next, we consider the valuation of two real defaultable bonds traded in the market and issued by different firms.
For this purpose, as in [11], we assume that the coefficients a(t) and b(t) in (2) are linearly dependent on time
and their expresions are given by a(t) = a1t+ a2, b(t) = b1t+ b2, where a1, a2, b1 and b2 are constants.

On one hand, we take into account the pricing of a bond from UBS with maturity 5 years and a face value of 100.
The bond pays annually coupon rates of 1.25 basis points and the recovery rate at the event of default is 40%.
The model parameter values for this example are collected in Table 2. In this case the correlation coefficient ρ
is assumed to be zero. Next, in Table 4 we present the value of the bond for different meshes and time steps. In
this case, we can appreciate that the price of the bond converges to 102.62.

On the other hand, we present a correlated case. More precisely, we address the valuation of a bond from JP
Morgan with maturity 5 years and a face value of 100. The bond pays annually coupon rates of 3.25 basis points
and the recovery rate at the event of default is again 40%. For this second example the parameter values of the
model are the ones which appear in Table 5. As we have just pointed out the correlation coefficient ρ is different
from zero. Finally, the value of this bond is shown in Table 6. In this case, the value of the bond converges to
103.57.

In both cases, in order to obtain the value of the bond for we need to solve for each coupon payment date the
IBVP (19) with maturity those dates and with initial condition h = 1 or h = exp(−κT )(x2−x̃∞2 ). More precisely,
in both examples the maturity of the bond is 5 years and the frequency of coupon payments is annually, thus to
obtain the value of the bond we need to solve the problem (19) 10 times, i.e. 5 times with one initial condition
to obtain the value of u1 and 5 times with the other initial condition to obtain the value of u2.

Next, in Figures 1 and 2 we show the mesh value of the UBS bond and the JP Morgan bond, respectively. Both
figures are obtained with the finer mesh and with time step ∆τ = 1

360
(one day).

Time steps per year Mesh 4 Mesh 8 Mesh 16 Mesh 32 Mesh 64
90 102.499496 102.603837 102.616859 102.619028 102.618959
180 102.499599 102.605953 102.617976 102.619681 102.619602
360 102.500454 102.606351 102.618421 102.620069 102.619925
720 102.500663 102.606518 102.618587 102.620248 102.620094

Table 4: Value of the UBS bond for different meshes and time steps.
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Parameters of the defaultable stock price model
a1 = 0.0312763
a2 = 0.0356952
b1 = 0.00038362
b2 = 0.00172115
c = 0.346622
β = −0.223027

Parameters of the interest rate model
κ = 0.14485883018483803
δ = 0.01330207057173363
θ = 0.03467342840511061

Correlation coefficient
ρ = 0.497108

Initial conditions
S0 = 1.0

r0 = 0.01469383913023823

Table 5: Parameters of the model for the JP Morgan bond.

Time steps per year Mesh 4 Mesh 8 Mesh 16 Mesh 32 Mesh 64
90 103.725041 103.596891 103.572191 103.570225 103.570524
180 103.841153 103.605155 103.575270 103.572747 103.573144
360 103.794567 103.602389 103.576483 103.574147 103.574509
720 103.794298 103.602461 103.577110 103.574772 103.575161

Table 6: Value of the JP Morgan bond for different meshes and time steps.

Figure 1: Value of the UBS bond

6. Conclusions

In this paper we have considered the valuation of a non callable defaultable coupon bond where the underlying
stochastic factors are the interest rate and the defaultable stock price. The pricing problem is posed as a sequence
of IBVPs. More precisely, two PDE problems with different initial conditions with maturity each coupon payment
date need to be solved. Once the numerical solution of these problems is carried out, the value of the bond is
computed by means of an expression which also involves the computation of an integral term.

In order to obtain a numerical solution of the PDE problems, we have proposed appropriate numerical methods
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Figure 2: Value of the JP Morgan bond

based on Lagrange-Galerkin formulations. More precisely, we combine a Crank-Nicolson semi-Lagrangian scheme
for time discretization with biquadratic Lagrange finite elements for space discretization. Moreover, the integral
term which is involved in the computation of the bond value is approximated by means of the classical composite
trapezoidal rule. Finally, we show some numerical results in order to illustrate the behaviour of the proposed
methods.

References

[1] R. Agliardi, A comprehensive structural model for defaultable fixed-income bonds, Quantitative Finance,
11 (5) (2011), 749-762.

[2] E.I. Altman and V.M. Kishore, Almost everything you wanted to know about recoveries on defaulted bonds,
Financial Analysts Journal 52 (1996), 57-64.
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