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Abstract

We propose a new methodology for the calibration of a hybrid credit-equity model to CDS spreads
and survival probabilities. We consider an extended Jump to Default Constant Elasticity of Variance
model incorporating stochastic and possibly negative interest rates. Our approach is based on a
perturbation technique that provides an explicit asymptotic expansion of the CDS spreads. The
robustness and efficiency of the method is confirmed by several calibration tests on real market data.
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1 Introduction

The purpose of this paper is provide a robust and efficient method to calibrate a hybrid credit-equity model
to the CDS market. Credit Default Swaps (CDS) are the most influential and traded credit derivatives.
They played an important role in the recent financial scandals: in the sub-prime crisis in 2007-2008 or the
trading losses by the “London Whale” at JP Morgan Chase in 2012. On the other hand, large global banks
have been successfully exploiting the CDS market in their trading activities: for example, JP Morgan
has several trillions of dollars of CDS notional outstanding. In parallel, the academic research on CDS,
liabilities and derivatives in general has quickly expanded in the recent years. Among the most important
contributions, the Jump to Default Constant Elasticity of Variance (JDCEV) model by Carr and Linetsky
[1], [7] is one of the first attempts to unify credit and equity models into the framework of deterministic
and positive interest rates. The authors of [1] claim that credit models should not ignore information
on stocks and there exists a connection among stock prices, volatilities and default intensities. Indeed,
earlier research on credit models (e.g. [2], [3], [4]) was more focused on how to palliate the absence of
bankruptcy possibility in classical option pricing theory and take into account that in real world firms
have a positive probability of default in finite time.

Nowadays the restrictive assumption of positive and deterministic interest rates of the JDCEV model
is not realistic and contradicts market observations. The purpose of this study is, on the one hand, to
incorporate stochastic and possibly negative interest rates into the JDCEV model; on the other hand,
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we aim at providing a fast and efficient technique to compute CDS spreads and default probabilities for
calibration purposes. In doing this we employ a recent methodology introduced in [6, 8], which consists in
an asymptotic expansion of the solution to the pricing partial differential equation. Our method allows to
calibrate the extended JDCEV model to real market data in real time. To assess the robustness of the
approximation method and the capability of the model of reproducing price dynamics, we provide several
tests on UBS and BNP Paribas CDS spreads.

This paper is organized as follows. In Section 2 we set the notations and review the jump to default
diffusion model. In Section 3 we introduce an extended JDCEV model with stochastic interest rates and
provide explicit approximation formulas for the CDS spreads and the risk-neutral survival probabilities.
Section 4 contains the numerical tests: we consider both the cases of correlated or uncorrelated spreads
and interest rates; we calibrate the model to market data of CDS spreads and compute the risk-neutral
survival probabilities: a comparison with standard Monte Carlo methods is provided as well. Appendix 5
contains auxiliary results and technical proofs.

2 CDS spread and default probability

We consider a probability space (Ω,G,Q) carrying a standard Brownian motion W and an exponential
random variable e ∼ Exp(1) independent of W . We assume, for simplicity, a frictionless market, no
arbitrage and take an equivalent martingale measure Q as given. All stochastic processes defined below
live on this probability space and all expectations are taken with respect to Q.

We assume that the pre-default stock log-price dynamics is given by
dXt =

(
rt − 1

2σ
2 (t,Xt) + λ (t,Xt)

)
dt+ σ (t,Xt) dW 1

t ,

drt = κ (θ − rt) dt+ δdW 2
t ,

dW 1
t dW 2

t = ρdt,

where the interest rate rt follows the Vasicek dynamics with parameters κ, θ, δ > 0. The time- and state-
dependent stock volatility σ = σ(t,X) and default intensity λ = λ(t,X) are assumed to be differentiable
with respect to X and uniformly bounded. In general the price can become worthless in two scenarios:
either the process eX hits zero via diffusion or a jump-to-default occurs from a positive value. The default
time ζ can be modeled as ζ = ζ0 ∧ ζ̃, where ζ0 = inf{t > 0 | eXt = 0} is the first hitting time of zero
for the stock price and ζ̃ = inf{t ≥ 0 | Λt ≥ e} is the jump-to-default time with intensity λ and hazard
rate Λt =

∫ t
0 λ(s,Xs)ds. In what follows, we denote by F = {Ft, t ≥ 0} the filtration generated by the

pre-default stock price and by D = {Dt, t ≥ 0} the filtration generated by the process Dt = 1{ζ≤t}.
Eventually, G = {Gt, t ≥ 0}, Gt = Ft ∨Dt is the enlarged filtration.

A CDS is an agreement between two parties, called the protection buyer and the protection seller,
typically designed to transfer to the protection seller the financial loss that the protection buyer would
suffer if a particular default event happened to a third party, called the reference entity. The protection
seller delivers a protection payment to the protection buyer at the time of the default event. In exchange
the protection buyer makes periodic premium payments at time intervals α at the credit default swap
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rate up to the default event or the expiry maturity, whichever comes first. The protection payment is
the specified percentage (1− η) of the CDS notional amount N, called loss-given-default. The valuation
problem is to determine the arbitrage-free CDS rate R that makes the present value of the CDS contract
equal to zero. This rate equates the present value of the protection payoff to the present value of all the
premium payments.

Proposition 2.1. Let T be the expiry date of the CDS contract, M be the total number of premium
payments and ti be the i-th periodic premium payment date, so that ti+1 − ti = T

M . Then we have

R =
(1− η)

(
1− E

[
e
−
∫ T

0
(ru+λ(u,Xu))du

]
−
∫ T

0 E

[
e
−
∫ s

0
(ru+λ(u,Xu))du

rs

]
ds
)

T
M

M∑
i=1

E

[
e
−
∫ ti

0
(ru+λ(u,Xu))du

] . (2.1)

Proof. By Corollary 5.5 in Appendix 5 and assuming a unit notional, the protection and premium legs at
time t are given by:

PV (Protection leg) = E

[
e
−
∫ ζ
t
rudu (1− η)1{ζ≤T}|Gt

]
= 1{ζ>t} (1− η)

∫ T

t

E

[
e
−
∫ s
t

(ru+λ(u,Xu))du
λ(s,Xs)|Ft

]
ds,

PV (Premium leg) =
M∑
i=1

E

[
e
−
∫ ti
t
rudu T

MRt1{ζ>ti}|Gt
]

= T
MRt1{ζ>t}

M∑
i=1

E

[
e
−
∫ ti
t

(ru+λ(u,Xu))du|Ft
]
.

The CDS spread at time t < T is given by equating the protection and premium legs and thus we get

Rt =
1{ζ>t} (1− η)

∫ T
t
E

[
e
−
∫ s
t

(ru+λ(u,Xu))du
λ(s,Xs)|Ft

]
ds

T
M 1{ζ>t}

M∑
i=1

E

[
e
−
∫ ti
t

(ru+λ(u,Xu))du|Ft
] ,

and in particular

R ≡ R0 =
(1− η)E

[∫ T
0 e
−
∫ s

0
(ru+λ(u,Xu))du

λ(s,Xs)ds
]

T
M

M∑
i=1

E

[
e
−
∫ ti

0
(ru+λ(u,Xu))du

] .

Next we use the identities

e
−
∫ s

0
(ru+λ(u,Xu))du

λ(s,Xs) = − ∂
∂s

(
e
−
∫ s

0
(ru+λ(u,Xu))du

)
− rse

−
∫ s

0
(ru+λ(u,Xu))du

,

and ∫ T

0
e
−
∫ s

0
(ru+λ(u,Xu))du

λ(s,Xs)ds = 1−
(
e
−
∫ T

0
(ru+λ(u,Xu))du +

∫ T

0
e
−
∫ s

0
(ru+λ(u,Xu))du

rsds
)
.

The thesis easily follows.
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Remark 2.2. The default intensity λ(t,Xt) can be considered as the instantaneous probability that the
stock will default between t and t+ dt, conditioned on the fact that no default has happened before:

λ(t,Xt) = Q (t ≤ ζ < t+ dt | ζ ≥ t) .

The survival probability up to time t is defined as

Q (t) := E

[
e
−
∫ t

0
λ(u,Xu)du

]
. (2.2)

3 CDS spread approximation under extended JDCEV model

In the JDCEV model the stock volatility is of the form

σ(t,X) = a(t)e(β−1)X

where β < 1 and a(t) > 0 are the so-called elasticity parameter and scale function. The default intensity
is expressed as a function of the stock volatility and the stock log-price, as follows

λ(t,X) = b(t) + c σ(t,X)2 = b(t) + c a(t)2e2(β−1)X (3.1)

where b(t) ≥ 0 and c ≥ 0 govern the sensitivity of the default intensity with respect to the volatility. The
risk-neutral dynamics of the defaultable stock price St = {St, t ≥ 0} are then given by

St = S0e
Xt1{ζ≥t}, S0 > 0,

dXt =
(
rt − 1

2σ
2 (t,Xt) + λ (t,Xt)

)
dt+ σ (t,Xt) dW 1

t ,

drt = κ (θ − rt) dt+ δdW 2
t ,

ζ = inf{t ≥ 0 |
∫ t

0 λ (t,Xt) ≥ e},

dW 1
t dW 2

t = ρdt.

(3.2)

Let us consider a European claim on the defaultable asset, paying h(XT ) at maturity T if no default
happens and without recovery in case of default. In case of constant interest rates, one deduces the value
of the European claim from the following result proved in [1].

Theorem 3.1. Let r be a non-negative constant and h be a continuous and bounded function. Then, for
any 0 ≤ t ≤ T , we have

E

[
exp

(
−c
∫ T

t

a(u)2e2(β−1)Xudu
)
h (XT ) |Xt = X0

]
= E

[(
Zτ
x

)− 1
|β−1|

h

(
e

∫ T
t
α(s)ds (|β − 1|Zτ )

1
|β−1|

)]
,

(3.3)

where {Zt, t ≥ 0} is a Bessel process starting from x, of index ν = c+1/2
|β−1| , and τ is the deterministic time

change defined as

τ (t) =
∫ t

0
a2(u)e2|β−1|

∫ s
0
αsdsdu, α(t) = r + b(t). (3.4)
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By Theorem 3.1 and standard results from enlargement filtration theory (cf. [4]), the value of the
European claim at time t < T is given by

E

[
e
−
∫ T
t
rudu

h (XT ) |Gt
]

= 1{ζ>t}E

[
e
−
∫ T
t

(ru+λ(u,Xu))du
h (XT ) |Ft

]
(3.5)

= 1{ζ>t}e
−
∫ T
t

(ru+bu)du
E

[
e
−c
∫ T
t
a2
ue

2(β−1)Xudu
h (XT ) |Ft

]
= 1{ζ>t}e

−
∫ T
t

(ru+bu)du
E

[(
Zτ
x

)− 1
|β−1|

h

(
e

∫ T
t
αsds (|β − 1|Zτ )

1
|β−1|

)]
.

The validity of the second and third equalities above is based on the assumption of deterministic interest
rates. In the general case of stochastic rates, the time-change function (3.4) is not deterministic anymore
and the expectation (3.3) cannot be computed analytically. For this reason, to deal with the general
case, we adopt a completely different approach and introduce a perturbation technique which provides an
explicit asymptotic expansion of the building block (3.5). Specifically, we base our analysis on the recent
results in [6, 8] on the approximation of solution to parabolic partial differential equations and we derive
approximations of the CDS spread (2.1) and the risk-neutral survival probability (2.2).

To present our main results, we consider the following general backward Cauchy problem(∂t + A)u (t, z) = 0, t < T, z ∈ Rd,

u (T, z) = h (z) , z ∈ Rd,
(3.6)

where A = A(t, z) is a (locally) parabolic differential operator of the form

A (t, z) =
∑
|α|≤2

aα (t, z)Dα
z , t ∈ R+, z ∈ Rd,

where

α = (α1, . . . , αd) , |α| =
d∑
i=1

α1 + . . .+ αd, D
α
z = ∂α1

z1
. . . ∂αdzd .

In our specific setting, we will consider A to be the infinitesimal generator of the stochastic processes
(X, r) in (3.2), whose precise expression in given in formula (3.14).

Next, we consider the formal expansions A =
∑
n
An and u =

∑
n
un, where the un’s, for n ≥ 0, are

defined recursively by(∂t + A0)u0(t, z) = 0, t < T, z ∈ Rd,

u0(T, z) = h(z), z ∈ Rd,

and 
(∂t + A0)un(t, z) = −

n∑
k=1

Akun−k(t, z), t < T, z ∈ Rd,

un(T, z) = 0, z ∈ Rd,
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where

An =
∑
|α|≤2

aα,n (t, z)Dα
z . (3.7)

In (3.7), (aα,n)0≤n≤N is the N -th order Taylor expansion of aα, in the spatial variables, around a fixed
point z̄. Notice that the functions aα,0 depend only on t: hence A0 is a heat operator with time-dependent
coefficients and can be written in the form

A0 = 1
2

d∑
i,j=1

Cij (t) ∂zizj +
d∑
i=1

mi (t) ∂zi + γ (t) ,

for some C = (Cij)i,j≤d ∈ Rd×d, m = (mi)i≤d ∈ Rd and γ ∈ R. It turns out that, for any n ≥ 0, un can
be computed explicitly, as the following result shows.

Theorem 3.2. We have

un (t, z;T ) = Lzn (t, T )u0 (t, z;T ) , t < T, z ∈ Rd, n ≥ 1, (3.8)

where

u0 (t, z;T ) = e

∫ T
t
γ(s,z)ds

∫
Rd

Γ0 (t, z;T, ξ)h (ξ) dξ, t < T, z ∈ Rd,

and Γ0 is the d-dimensional Gaussian density

Γ0 (t, z;T, ξ) = 1√
2πd detC (t, T )

exp
(
−1

2 〈C
−1 (t, T ) (ξ − z −m (t, T )) , (ξ − z −m (t, T ))〉

)
,

with covariance matrix C(t, T ) and mean vector z +m(t, T ) given by

C(t, T ) =
∫ T

t

C(s)ds, m(t, T ) =
∫ T

t

m(s)ds. (3.9)

In (3.8), Lzn(t, T ) denotes the differential operator acting on the z-variable and defined as

Lzn (t, T ) =
n∑
h=1

∫ T

t

ds1

∫ T

s1

ds2 . . .

∫ T

sh−1

dsh
∑
i∈In,h

Gzi1 (t, s1) . . .Gzih (t, sh) , (3.10)

where

In,h = {i = (i1, . . . , ih) ∈ Nh | i1 + i2 + . . .+ ih = n}

and the operators Gzn(t, s) are defined as

Gzn (t, s) =
∑
|α|≤2

aα,n (s,Mz (t, s))Dα
z ,

with

Mz (t, s) = z +m (t, s) + C (t, s)Dz.
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Proof. See [6].

Under rather general assumptions on A, the following estimate for the approximation error holds:

|u(t, z)− uN (t, z;T )| ≤ C(T − t)
N+2

2 (3.11)

where uN (t, z;T ) is the N -th order approximation in (3.8) and C is a positive constant dependent on
n. Formula (3.11) ensures the short-time asymptotic convergence of the approximation un to the exact
solution u of problem (3.6). This theoretical result can be proved by adapting the arguments of [8], Theor.
3.1, and will be confirmed by the numerical tests in Section 4.

Going back to CDS spread approximation, we see from (2.1) that we have to evaluate expectations of
the form

u (0, X0, r0;T ) = E

[
e
−
∫ T

0
(ru+λ(u,Xu))du

h (rT )
]
, (3.12)

with h (r) = 1 or h (r) = r. By the change of variable rt = e−κtyt and from the Feynman-Kac formula
(cf., for instance, [9]) it follows that u in (3.12) is solution to the Cauchy problem(∂t + A)u (t, x, y) = 0, t < T, x, y ∈ R

u (T, x, y) = h (y) , x, y ∈ R,
(3.13)

where

A = 1
2σ

2 (t, x) ∂xx + ρδσ(t, x)eκt∂xy + 1
2δ

2e2κt∂yy

+
(
e−κty + λ (t, x)− 1

2σ
2 (t, x)

)
∂x + κθeκt∂y −

(
e−κty + λ (t, x)

)
.

(3.14)

Theorem 3.3. Under the assumptions of Proposition 2.1 and under the general dynamics (3.2), the N -th
order approximation of the CDS spread in (2.1) is given by

RN =
(1− L)

(
1−

N∑
n=0

L
(x,y)
n (0, T )u1

0 (0, x, y;T )−
∫ T

0 e−κs
N∑
n=0

L
(x,y)
n (0, s)u2

0 (0, x, y; s) ds
)

T
M

M∑
i=1

N∑
n=0

L
(x,y)
n (0, ti)u1

0 (0, x, y; ti)
,(3.15)

where

u1
0 (t, x, y, s) = e

−
∫ s
t

(e−κuy+λ(u,x))du
,

u2
0 (t, x, y; s) = e

−
∫ s
t

(e−κuy+λ(u,x))du (y +m2 (t, s)) ,

m2(t, s) is the second component of the vector m(t, s) in (3.9) and the differential operators L
(x,y)
n can be

computed explicitly as in Theorem (3.2).

Proof. In formula (2.1) there appear terms of the form

E

[
e
−
∫ t

0
(ru+λ(u,Xu))du

]
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in the numerator and denominator, that are solutions to problem (3.13) with h(y) = 1. On the other
hand, in (2.1) there also appear terms of the form

E

[
e
−
∫ t

0
(ru+λ(u,Xu))du

rt

]
which are solutions to the same problem with h(y) = e−κty. Theorem 3.2 and (3.11) yield the approxima-
tions

E

[
e
−
∫ t

0
(ru+λ(u,Xu))du

]
=

N∑
n=0

L(x,y)
n (0, t)u1

0 (0, x, y; t) + O
(
t
N+2

2

)
,

E

[
e
−
∫ t

0
(ru+λ(u,Xu))du

rt

]
= e−κt

N∑
n=0

L(x,y)
n (0, t)u2

0 (0, x, y; t) + O
(
t
N+2

2

)
,

as t→ 0+, where

u1
0 (0, x, y, t) = e

−
∫ t

0
(e−κuy+λ(u,x))du

∫
R2

Γ0 (0, x, y; t, ξ1, ξ2) dξ1dξ2,

= e
−
∫ t

0
(e−κuy+λ(u,x))du

,

and

u2
0 (0, x, y; t) = u1

0 (0, x, y, t)
∫
R2

Γ0 (0, x, y; t, ξ1, ξ2)h (ξ2) dξ1dξ2,

= u1
0 (0, x, y, t)

∫
R2

Γ0 (0, x, y; t, ξ1, ξ2) ξ2dξ1dξ2

= u1
0 (0, x, y, t) (y +m2(0, t)) .

Remark 3.4. We have an analogous approximation result for the survival probability in (2.2). Since it
can be expressed as the solution to the problem(∂t + A) v (t, x, y) = 0, t < T, x, y ∈ R

v (T, x, y) = 1, x, y ∈ R,

then, by Theorem 3.2, we have

Q (t) =
∑
n≥0

Lxn (0, t) v0 (0, x, y;T ) , (3.16)

where v0(t, x, y;T ) = exp
(
−
∫ T
t
λ(u, x)du

)
and the operators Lxn (0, t) are defined as in (3.10). As an

example, we give here the explicit first order approximation of the survival probability in the case of
constant parameters a(t) = a and b(t) = b:

v0 (0, x, y;T ) = e−(b+ca2e2(β−1)x)T ,

v1 (t, x, y;T ) = v0 (t, x, y;T )− ce2(β−1)x−T(b+ca2e(β−1)x) (β − 1) a2·

·
−4y + 4θ + e−Tκ

(
4y − 4θ + eTκTκ

(
4y − 4θ + eTκ

(
2 (b+ θ) + (−1 + 2c) e2(β−1)xa2)))

2κ2 .
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4 CDS calibration and numerical tests

In this section we apply the method developed in Section 3 to calibrate the model to market CDS spreads.
We use quotations for different companies (specifically, UBS and BNP Paribas) in order to check the
robustness of our methodology. The calibration is based on a two-step procedure: we first calibrate
separately the interest rate model to daily yields curves for zero-coupon bonds (ZCB), generated using
Libor swap curve. Subsequently, we consider CDS contracts with different maturity dates. We use the
approximation formulas (3.15) and (3.16) for the CDS spreads and survival probabilities, respectively. We
use second-order approximations: we have found these to be sufficiently accurate by numerical experiments
and theoretical error estimates. The formulas for the second-order approximation are simple, making the
method easy to implement.

We distinguish between the uncorrelated and correlated cases: in the first case, i.e. when ρ = 0, the
survival probability, which is not quoted from the market, can be inferred from the CDS spreads through
a bootstrapping formula and therefore it is possible to calibrate directly to the survival probabilities. In
the general case when ρ 6= 0, we calibrate to the market spreads using formula (3.15).

To add more flexibility to the model, we assume that the coefficients a(t) and b(t) in (3.1) are linearly
dependent on time: more precisely, we assume that

a(t) = a1t+ a2, b(t) = b1t+ b2,

for some constants a1, a2, b1, and b2.
As defined in (3.2), the stochastic interest rate is described by a Vasicek model

drt = κ (θ − rt) dt+ δdW 2
t .

Apart from its simplicity, one of the advantages of this model is that interest rates can take negative
values. For the calibration, we use the standard formula for the price Pt (T ) of a T -bond, which we recall
here for convenience:

Pt (T ) = At (T ) e−Bt(T )rt ,

where

At (T ) = e

(
θ− δ2

2κ2

)
(Bt(T )−T+t)− δ2

4κBt(T )
, Bt (T ) = 1− e−κ(T−t)

κ
.

The results of the interest rate calibration are given in Table 1.

4.1 CDS calibration

We consider UBS and BNP Paribas senior CDS contracts with expiry dates up to 6 years and paid
quarterly with a recovery rate of 40% at the event of default. We first consider the uncorrelated case
(ρ = 0): in Tables 2 and 4 we present the calibration of the model to the market UBS and BNP Paribas
CDS spreads. Columns 2 and 3 contain the market and the model CDS spreads respectively; in the last
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Maturity (years) market ZCB model ZCB error
1 1.00229 1.00675 0.389355 %
2 1.00372 1.00906 0.532726 %
3 1.00333 1.0075 0.415164 %
4 1.00099 1.00257 0.157386 %
5 0.995825 0.994877 -0.0952038%
6 0.987805 0.984878 -0.296311%
7 0.976833 0.972974 -0.395081%
8 0.963223 0.959587 -0.377492%
9 0.947687 0.945069 -0.276223%
10 0.932845 0.929643 -0.343245 %

Table 1: Calibration to ZCB: κ = 0.045, θ = 0.103, δ = 0.021 and r0 = −0.009

Maturity market spread (bps) model spread (bps) error
0.5 21.88 21.7414 -0.633298 %
1 25.72 26.0506 1.2855 %
2 35.105 34.81 -0.840299%
3 43.97 43.73 -0.545896 %
4 52.3 52.7784 0.914736 %
5 61.91 61.9249 0.0240213 %
6 71.285 71.1412 -0.201668 %

Table 2: Calibration to UBS CDS spreads (uncorrelated case): a1 = 0.034, a2 = 0.05, β = 0.73, b1 =
0.003, b2 = 0.003, c = 0.044

Maturity market probability model probability Monte Carlo
0.5 0.99818 0.998189 [0.998193, 0.998193]
1 0.99572 0.995667 [0.995681, 0.995681]
2 0.98837 0.988462 [0.988521, 0.988521]
3 0.97823 0.978346 [0.978483, 0.978485]
4 0.96564 0.965305 [0.965557, 0.965562]
5 0.94944 0.94935 [0.949772, 0.949784]
6 0.93056 0.930517 [0.931157, 0.931178]

Table 3: Risk-neutral UBS survival probabilities (uncorrelated case)

column the corresponding relative errors are given. In Tables 3 and 5 the results are compared with a
standard Monte Carlo approximation.

Next we consider the general case when ρ is not necessarily null. Tables 6 and 8 show the results of

10



Maturity market spread (bps) model spread (bps) error
0.5 29.885 29.676 -0.699438 %
1 34.615 34.6479 0.0950748 %
2 45.115 45.3808 0.589209%
3 56.11 57.1068 1.77644 %
4 72.59 69.7438 -3.92092 %
5 82.27 83.2102 1.14283 %
6 96.705 97.4355 0.755409 %

Table 4: Calibration to BNP Paribas CDS spreads (uncorrelated case): a1 = 0.04, a2 = 0.0, β = 0.5, b1 =
0.003, b2 = 0.004, c = 0.16

Maturity market probability model probability Monte Carlo
0.5 0.99425 0.997529 [0.997533, 0.997533]
1 0.99425 0.994242 [0.994258, 0.994258]
2 0.98508 0.984982 [0.985055, 0.985056]
3 0.97230 0.971786 [0.971978, 0.971982]
4 0.95254 0.954274 [0.954678, 0.954694]
5 0.93328 0.93212 [0.932902, 0.932944]
6 0.90887 0.905038 [0.906404, 0.9065]

Table 5: Risk-neutral BNP Paribas survival probabilities (uncorrelated case)

the calibration to the market UBS and BNP Paribas CDS spreads, respectively. We use the calibrated
parameters to compute the survival probabilities via the approximation formula (3.16) and compare them
with the ones calculated by Monte Carlo simulation, see Tables 7 and 9.

Maturity market spread (bps) model spread (bps) error
0.5 21.88 21.6822 1.37983 %
1 25.72 26.0781 1.37983 %
2 35.105 34.8897 -0.720097%
3 43.97 43.7306 -0.580432 %
4 52.3 52.6546 0.769752 %
5 61.91 61.7995 -0.0627898 %
6 71.285 71.4283 0.0279619%

Table 6: Calibration to UBS CDS spreads: a1 = 0.08, a2 = 0.0, β = −1.3, b1 = 0.003, b2 = 0.003, c =
0.001 and ρ = −0.018
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Maturity approx. Monte Carlo
0.5 0.998194 [0.998198, 0.998198]
1 0.995663 [0.995677, 0.995677]
2 0.988437 [0.98828, 0.988505]
3 0.97835 [0.974545, 0.9758]
4 0.965397 [0.958105, 0.95988]
5 0.949471 [0.942493, 0.944291]
6 0.930256 [0.923795, 0.925681]

Table 7: Risk-neutral UBS survival probabilities (correlated case): comparison between the value obtained
via the approximation formula (3.16) and standard Monte Carlo simulation

Maturity market spread (bps) model spread (bps) error
0.5 29.885 29.7742 -0.370808 %
1 34.615 34.6073 -0.0222804 %
2 45.115 45.2691 0.341665 %
3 56.11 57.1111 1.78411 %
4 72.59 69.8972 -3.70955 %
5 82.27 83.3487 1.31112 %
6 96.705 97.176 0.487021 %

Table 8: Calibration to BNP Paribas CDS spreads: a1 = 0.02, a2 = 0.02, β = −0.017, b1 = 0.002, b2 =
0.004, c = 0.86 and ρ = −0.9

Maturity approx. Monte Carlo
0.5 0.997521 [0.997525, 0.997525]
1 0.994247 [0.994264, 0.994265]
2 0.984991 [0.98509, 0.985093]
3 0.971631 [0.971968, 0.971979]
4 0.953636 [0.954551, 0.954581]
5 0.930552, [0.932707, 0.932774]
6 0.901985 [0.906558, 0.90669]

Table 9: Risk-neutral BNP Paribas survival probabilities (correlated case)

5 Appendix

We collect some results on hazard rate and conditional expectation with respect to enlarged filtrations.
We present the key formula which relates the conditional expectation with respect to a “big” filtration to
the conditional expectation with respect to a “small” filtration. For more about filtration enlargement, we
refer for instance to [5].
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Let ζ be a non-negative random variable on a probability space (Ω,G,Q), such that Q(ζ = 0) = 0
and Q(ζ > t) > 0 for any t ≥ 0. We introduce a right-continuous process D defined as Dt = 1{ζ≤t}, and
we denote by D the filtration generated by D; that is Dt = σ(Du | u ≤ t). Let F = (Ft)t≥0 be a given
filtration on (Ω,G,Q) such that G := D ∨ F; that is we set Gt := Dt ∨ Ft for every t ∈ R+. Since Dt ⊆ Gt
for any t, the random variable ζ is a stopping time with respect to G. The financial interpretation is that
the filtration F models the flow of observations available to the investors prior to the default time ζ. For
any t ∈ R+, we write Ft = Q(ζ ≤ t|Ft), so that 1 − Ft = Q(ζ > t|Ft): notice that F is a bounded and
non-negative F-submartingale. We may thus deal with its right-continuous modification.

Definition 5.1. The F-hazard process of ζ, denoted by Γ, is defined through the formula 1− Ft = e−Γt

for every t ∈ R+.

Lemma 5.2. We have Gt ⊂ G∗t , where

G∗t := {A ∈ G | ∃B ∈ Ft A ∩ {ζ > t} = B ∩ {ζ > t}} .

Proof. Observe that Gt = Dt ∨ Ft = σ(Dt,Ft) = σ({ζ ≤ u} , u ≤ t,Ft). Also, it is easily seen that the the
class G∗t is a sub−σ-field of G. Therefore, it is enough to check that if either A = {ζ ≤ u} for u ≤ t or
A ∈ Ft, then there exists an event B ∈ Ft such that A ∩ {ζ > t} = B ∩ {ζ > t}. Indeed, in the former
case we may take B = ∅, in the latter B = A.

Lemma 5.3. For any G-measurable random variable Y we have, for any t ∈ R+

E
[
1{ζ>t}Y |Gt

]
= 1{ζ>t}

E [Y |Ft]
Q(ζ > t|Ft)

= 1{ζ>t}e
ΓtE

[
1{ζ>t}Y |Ft

]
. (5.1)

Proof. Let us fix t ∈ R+. In view of the Lemma 5.2. any Gt-measurable random variable coincides on the
set {ζ > t} with some Ft-measurable random variable. Therefore

E
[
1{ζ>t}Y |Gt

]
= 1{ζ>t}E [Y |Gt] = 1{ζ>t}X,

where X is an Ft-measurable random variable. Taking the conditional expectation with respect to Ft, we
obtain

E
[
1{ζ>t}Y |Ft

]
= Q(ζ > t|Ft)X.

Proposition 5.4. Let Z be a bounded F-predictable process. Then for any t < s ≤ ∞

E
[
1{t<ζ≤s}Zζ |Gt

]
= 1{ζ>t}e

ΓtE

[∫
]t,s]

ZudFu|Ft

]
. (5.2)

Proof. We start by assuming that Z is a piecewise constant F-predictable process, so that (we are
interested only in values of Z for u ∈]t, s])

Zu =
n∑
i=0

Zti1]ti,ti+1](u),
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where t = t0 < . . . < tn+1 = s and the random variable Zti is Fti-measurable. In the view of (5.1), for
any i we have

E
[
1{ti<ζ≤ti+1}Zζ |Gt

]
= 1{ζ>t}e

ΓtE
[
1{ti<ζ≤ti+1}Zti |Ft

]
= 1{ζ>t}e

ΓtE
[
Zti(Fti+1 − Fti)|Ft

]
.

In the second step we approximate an arbitrary bounded F-predictable process by a sequence of piecewise
constant F-predictable process.

Corollary 5.5. Let Y be a G-measurable random variable. Then, for any t ≤ s, we have

E
[
1{ζ>s}Y |Gt

]
= 1{ζ>t}E

[
1{ζ>s}e

ΓtY |Ft
]
. (5.3)

Furthermore, for any Fs-measurable random variable Y we have

E
[
1{ζ>s}Y |Gt

]
= 1{ζ>t}E

[
eΓt−ΓsY |Ft

]
. (5.4)

If F (and thus Γ) is a continuous increasing process then for any F-predictable bounded process Z we have

E
[
1{t<ζ≤s}Zζ |Gt

]
= 1{ζ>t}E

[∫ s

t

Zue
Γt−ΓudΓu|Ft

]
. (5.5)

Proof. In view of (5.1), to show that (5.3) holds, it is enough to observe that 1{ζ>s} = 1{ζ>t}1{ζ>s}.
Equality (5.4) is a straightforward consequence of (5.3). Formula (5.5) follows from (5.2) since, when F is
increasing, dFu = e−ΓudΓu.
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