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Abstract

We propose a new methodology for the calibration of a hybrid credit-equity model to credit

default swap (CDS) spreads and survival probabilities. We consider an extended Jump to Default

Constant Elasticity of Variance model incorporating stochastic and possibly negative interest

rates. Our approach is based on a perturbation technique that provides an explicit asymptotic

expansion of the credit default swap spreads. The robustness and efficiency of the method is

confirmed by several calibration tests on real market data.

KEYWORDS

credit default swap; hybrid credit-equity model; Constant Elasticity of Variance model;

asymptotic expansion

1. Introduction

The purpose of this paper is to provide a robust and efficient method to calibrate a hybrid credit-equity

model to the CDS market. Credit Default Swaps (CDS) are the most influential and traded credit

derivatives. They played an important role in the recent financial scandals: in the sub-prime crisis in

2007-2008 or the trading losses by the “London Whale” at JP Morgan Chase in 2012. On the other

hand, large global banks have been successfully exploiting the CDS market in their trading activities: for

example, JP Morgan has several trillions of dollars of CDS notional outstanding. In parallel, the academic

research on CDS, liabilities and derivatives in general has quickly expanded in the recent years. Among

the most important contributions, the Jump to Default Constant Elasticity of Variance (JDCEV) model

by Carr and Linetsky [2, 9, 10] is one of the first attempts to unify credit and equity models into the

framework of deterministic and positive interest rates. The authors of [2] claim that credit models should
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not ignore information on stocks and there exists a connection among stock prices, volatilities and default

intensities. Indeed, earlier research on credit models (e.g. [3, 4, 6]was more focused on how to palliate

the absence of bankruptcy possibility in classical option pricing theory and take into account that in real

world firms have a positive probability of default in finite time.

Nowadays the restrictive assumption of positive and deterministic interest rates of the JDCEV model

is not realistic and contradicts market observations. The purpose of this study is, first, to incorporate

stochastic and possibly negative interest rates into the JDCEV model and then, we propose a fast and

efficient technique to compute CDS spreads and default probabilities for calibration purposes. In doing

this we employ a recent methodology introduced in [8, 11], which consists of asymptotic expansion of the

solution to the pricing partial differential equation. Our method allows to calibrate the extended JDCEV

model to real market data in real time. To assess the robustness of the approximation method and the

capability of the model of reproducing price dynamics, we provide several tests on UBS AG and BNP

Paribas CDS spreads.

This paper is organized as follows. In Section 2 we set the notations and review the jump to default

diffusion model. In Section 3 we introduce an extended JDCEV model with stochastic interest rates and

provide explicit approximation formulas for the CDS spreads and the risk-neutral survival probabilities.

Section 4 contains the numerical tests: we consider both the cases of correlated or uncorrelated spreads

and interest rates; we calibrate the model to market data of CDS spreads and compute the risk-neutral

survival probabilities: a comparison with standard Monte Carlo methods is provided as well. Appendix 5

contains auxiliary results and technical proofs.

2. CDS spread and default probability

We consider a probability space (Ω,G,Q) carrying a standard Brownian motion W and an exponential

random variable ε ∼ Exp(1) independent of W . We assume, for simplicity, a frictionless market, no

arbitrage and take an equivalent martingale measure Q as given. All stochastic processes defined below

live on this probability space and all expectations are taken with respect to Q.

Let S̃ be the pre-default stock price. We assume that the dynamics of X = log S̃ is given by
dXt =

(
rt − 1

2σ
2 (t,Xt) + λ (t,Xt)

)
dt+ σ (t,Xt) dW 1

t ,

drt = κ (θ − rt) dt+ δdW 2
t ,

dW 1
t dW 2

t = ρdt,

(2.1)

where the interest rate rt follows the Vasicek dynamics with parameters κ, θ, δ > 0. The time- and state-

dependent stock volatility σ = σ(t,X) and default intensity λ = λ(t,X) are assumed to be differentiable

with respect to X and uniformly bounded. In general the price can become worthless in two scenarios:
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either the process eX hits zero via diffusion or a jump-to-default occurs from a positive value. The default

time ζ can be modeled as ζ = ζ0 ∧ ζ̃, where ζ0 = inf{t > 0 | S̃t = 0} is the first hitting time of zero

for the stock price and ζ̃ = inf{t ≥ 0 | Λt ≥ ε} is the jump-to-default time with intensity λ and hazard

rate Λt =
∫ t

0
λ(s,Xs)ds. In what follows, we denote by F = {Ft, t ≥ 0} the filtration generated by the

pre-default stock price and by D = {Dt, t ≥ 0} the filtration generated by the process Dt = 1{ζ≤t}.

Eventually, G = {Gt, t ≥ 0}, Gt = Ft ∨Dt is the enlarged filtration.

A CDS is an agreement between two parties, called the protection buyer and the protection seller,

typically designed to transfer to the protection seller the financial loss that the protection buyer would

suffer if a particular default event happened to a third party, called the reference entity. The protection

seller delivers a protection payment to the protection buyer at the time of the default event. In exchange

the protection buyer makes periodic premium payments at time intervals α at the credit default swap

rate up to the default event or the expiry maturity, whichever comes first. The protection payment is

the specified percentage (1− η) of the CDS notional amount N, called loss-given-default. The valuation

problem is to determine the arbitrage-free CDS rate R that makes the present value of the CDS contract

equal to zero. This rate equates the present value of the protection payoff to the present value of all the

premium payments.

Proposition 2.1. Let T be the expiry date of the CDS contract, M be the total number of premium

payments and ti be the i-th periodic premium payment date, so that ti+1 − ti = T
M . Then we have

R =
(1− η)

(
1− E

[
e−
∫ T
0

(ru+λ(u,Xu))du
]
−
∫ T

0
E
[
e−
∫ s
0

(ru+λ(u,Xu))durs

]
ds
)

T
M

M∑
i=1

E
[
e−
∫ ti
0 (ru+λ(u,Xu))du

] . (2.2)

Proof. By Corollary 5.11 in Appendix 5 and assuming a unit notional, the protection and premium legs

at time t are given by:

PV (Protection leg) = E
[
e−
∫ ζ
t
rudu (1− η)1{ζ≤T}|Gt

]
(2.3)

= 1{ζ>t} (1− η)

∫ T

t

E
[
e−
∫ s
t

(ru+λ(u,Xu))duλ(s,Xs)|Ft
]

ds, (2.4)

PV (Premium leg) =

M∑
i=1

E
[
e−
∫ ti
t rudu T

MRt1{ζ>ti}|Gt
]

(2.5)

= T
MRt1{ζ>t}

M∑
i=1

E
[
e−
∫ ti
t (ru+λ(u,Xu))du|Ft

]
. (2.6)
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The CDS spread at time t < T is given by equating the protection and premium legs and thus we get

Rt =
1{ζ>t} (1− η)

∫ T
t
E
[
e−
∫ s
t

(ru+λ(u,Xu))duλ(s,Xs)|Ft
]

ds

T
M 1{ζ>t}

M∑
i=1

E
[
e−
∫ ti
t (ru+λ(u,Xu))du|Ft

] , (2.7)

and in particular

R ≡ R0 =
(1− η)E

[∫ T
0
e−
∫ s
0

(ru+λ(u,Xu))duλ(s,Xs)ds
]

T
M

M∑
i=1

E
[
e−
∫ ti
0 (ru+λ(u,Xu))du

] . (2.8)

Next we use the identities

e−
∫ s
0

(ru+λ(u,Xu))duλ(s,Xs) = − ∂
∂s

(
e−
∫ s
0

(ru+λ(u,Xu))du
)
− rse−

∫ s
0

(ru+λ(u,Xu))du, (2.9)

and∫ T

0

e−
∫ s
0

(ru+λ(u,Xu))duλ(s,Xs)ds = 1−

(
e−
∫ T
0

(ru+λ(u,Xu))du +

∫ T

0

e−
∫ s
0

(ru+λ(u,Xu))dursds

)
. (2.10)

The statement easily follows.

Remark 2.2. The default intensity λ(t,Xt) can be considered as the instantaneous probability that the

stock will default between t and t+ dt, conditioned on the fact that no default has happened before:

λ(t,Xt)dt = Q (t ≤ ζ < t+ dt | ζ ≥ t) . (2.11)

The survival probability up to time t is defined as

Q (t) := E
[
e−
∫ t
0
λ(u,Xu)du

]
. (2.12)

3. CDS spread approximation under extended JDCEV model

In the JDCEV model the stock volatility is of the form

σ(t,X) = a(t)e(β−1)X (3.1)

where β < 1 and a(t) > 0 are the so-called elasticity parameter and scale function. The default intensity

is expressed as a function of the stock volatility and the stock log-price, as follows

λ(t,X) = b(t) + c σ(t,X)2 = b(t) + c a(t)2e2(β−1)X (3.2)
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where b(t) ≥ 0 and c ≥ 0 govern the sensitivity of the default intensity with respect to the volatility. The

risk-neutral dynamics of the defaultable stock price St = {St, t ≥ 0} are then given by

St = S0e
Xt1{ζ≥t}, S0 > 0,

dXt =
(
rt − 1

2σ
2 (t,Xt) + λ (t,Xt)

)
dt+ σ (t,Xt) dW 1

t ,

drt = κ (θ − rt) dt+ δdW 2
t ,

ζ = inf{t ≥ 0 |
∫ t

0
λ (t,Xt) ≥ e},

dW 1
t dW 2

t = ρdt.

(3.3)

Let us consider a European claim on the defaultable asset, paying h(XT ) at maturity T if no default

happens and without recovery in case of default. In case of constant interest rates, one deduces the value

of the European claim from the following result proved in [2].

Theorem 3.1. Let r be a non-negative constant and h be a continuous and bounded function. Then, for

any 0 ≤ t ≤ T , we have

E

[
exp

(
−c
∫ T

t

a(u)2e2(β−1)Xudu

)
h (XT ) |Xt = X0

]
= E

[(
Zτ(t)

x

)− 1
|β−1|

h
(
e
∫ T
t
α(s)ds

(
|β − 1|Zτ(t)

) 1
|β−1|

)]
,

(3.4)

where {Zt, t ≥ 0} is a Bessel process starting from x, of index ν = c+1/2
|β−1| , and τ is the deterministic time

change defined as

τ (t) =

∫ t

0

a2(u)e2|β−1|
∫ u
0
αsdsdu, α(t) = r + b(t). (3.5)

By Theorem 3.1 and standard results from enlargement filtration theory (cf. [6]), the value of the

European claim at time t < T is given by

E
[
e−
∫ T
t
ruduh (XT ) |Gt

]
= 1{ζ>t}E

[
e−
∫ T
t

(ru+λ(u,Xu))duh (XT ) |Ft
]

(3.6)

= 1{ζ>t}e
−
∫ T
t

(ru+bu)duE
[
e−c

∫ T
t
a2ue

2(β−1)Xuduh (XT ) |Ft
]

(3.7)

= 1{ζ>t}e
−
∫ T
t

(ru+bu)duE

[(
Zτ(t)

x

)− 1
|β−1|

h
(
e
∫ T
t
αsds

(
|β − 1|Zτ(t)

) 1
|β−1|

)]
.

(3.8)

The validity of the second and third equalities above is based on the assumption of deterministic interest

rates. In the general case of stochastic rates, the time-change function (3.5) is not deterministic anymore

and the expectation (3.4) cannot be computed analytically. For this reason, to deal with the general

case, we adopt a completely different approach and introduce a perturbation technique which provides an
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explicit asymptotic expansion of the building block (3.6). Specifically, we base our analysis on the recent

results in [8, 11] on the approximation of solution to parabolic partial differential equations and we derive

approximations of the CDS spread (2.2) and the risk-neutral survival probability (2.12).

To present our main results, we consider the following general backward Cauchy problem(∂t + A)u (t, z) = 0, t < T, z ∈ Rd,

u (T, z) = h (z) , z ∈ Rd,
(3.9)

where A = A(t, z) is a (locally) parabolic differential operator of the form

A (t, z) =
∑
|α|≤2

aα (t, z)Dα
z , t ∈ R+, z ∈ Rd, (3.10)

where

α = (α1, . . . , αd) , |α| =
d∑
i=1

α1 + . . .+ αd, D
α
z = ∂α1

z1 . . . ∂
αd
zd
. (3.11)

In our specific setting, we will consider A to be the infinitesimal generator of the stochastic processes

(X, r) in (3.3), whose precise expression is given in formula (3.27).

Next, we consider the formal expansions A =
∑
n
An and u =

∑
n
un, where the un’s, for n ≥ 0, are

defined recursively by(∂t + A0)u0(t, z) = 0, t < T, z ∈ Rd,

u0(T, z) = h(z), z ∈ Rd,
(3.12)

and 
(∂t + A0)un(t, z) = −

n∑
k=1

Akun−k(t, z), t < T, z ∈ Rd,

un(T, z) = 0, z ∈ Rd,
(3.13)

where

An =
∑
|α|≤2

aα,n (t, z)Dα
z . (3.14)

In (3.14), (aα,n)0≤n≤N is the N -th order Taylor expansion of aα, in the spatial variables, around a fixed

point z̄. Notice that the functions aα,0 depend only on t: hence A0 is a heat operator with time-dependent
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coefficients and can be written in the form

A0 =
1

2

d∑
i,j=1

Cij (t) ∂zizj +

d∑
i=1

mi (t) ∂zi + γ (t) , (3.15)

for some C = (Cij)i,j≤d ∈ Rd×d, m = (mi)i≤d ∈ Rd and γ ∈ R. By Duhamel’s principle, the solution u0

to the pde (3.12) is

u0 (t, z;T ) = e
∫ T
t
γ(s,z)ds

∫
Rd

Γ0 (t, z;T, ξ)h (ξ) dξ, t < T, z ∈ Rd, (3.16)

where Γ0 is the d-dimensional Gaussian density

Γ0 (t, z;T, ξ) =
1√

2πd detC (t, T )
exp

(
−1

2
〈C−1 (t, T ) (ξ − z −m (t, T )) , (ξ − z −m (t, T ))〉

)
, (3.17)

with covariance matrix C(t, T ) and mean vector z +m(t, T ) given by

C(t, T ) =

∫ T

t

C(s)ds, m(t, T ) =

∫ T

t

m(s)ds. (3.18)

It turns out that, for any n ≥ 0, un can be computed explicitly, as the following result shows.

Theorem 3.2. For any n ≥ 1, the solution un to the Cauchy problem (3.13) is given by

un (t, z;T ) = Lzn (t, T )u0 (t, z;T ) , t < T, z ∈ Rd. (3.19)

In (3.19), Lzn(t, T ) denotes the differential operator acting on the z-variable and defined as

Lzn (t, T ) =

n∑
h=1

∫ T

t

ds1

∫ T

s1

ds2 . . .

∫ T

sh−1

dsh
∑
i∈In,h

Gzi1 (t, s1) . . .Gzih (t, sh) , (3.20)

where

In,h = {i = (i1, . . . , ih) ∈ Nh | i1 + i2 + . . .+ ih = n} (3.21)

and the operators Gzn(t, s) are defined as

Gzn (t, s) =
∑
|α|≤2

aα,n (s,Mz (t, s))Dα
z , (3.22)

with

Mz (t, s) = z +m (t, s) + C (t, s)Dz. (3.23)
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Proof. See [8].

Under rather general assumptions on A, the following estimate for the approximation error holds:

|u(t, z)− uN (t, z;T )| ≤ CN (T − t)
N+2

2 (3.24)

where uN (t, z;T ) is the N -th order approximation in (3.19) and CN is a positive constant dependent on

N but not on T − t. Formula (3.24) ensures the short-time asymptotic convergence of the approximation

un to the exact solution u of Cauchy problem (3.9). This theoretical result can be proved by adapting the

arguments of [11], Theor. 3.1, and will be confirmed by the numerical tests in Section 4.

Going back to CDS spread approximation, we see from (2.2) that we have to evaluate expectations of

the form

u (0, X0, r0;T ) = E
[
e−
∫ T
0

(ru+λ(u,Xu))duh (rT )
]
, (3.25)

with h (r) = 1 or h (r) = r. By the change of variable rt = e−κtyt and from the Feynman-Kac formula (cf.,

for instance, [12]) it follows that u in (3.25) is solution to the Cauchy problem(∂t + A)u (t, x, y) = 0, t < T, x, y ∈ R

u (T, x, y) = h (y) , x, y ∈ R,
(3.26)

where

A =
1

2
σ2 (t, x) ∂xx + ρδσ(t, x)eκt∂xy +

1

2
δ2e2κt∂yy

+

(
e−κty + λ (t, x)− 1

2
σ2 (t, x)

)
∂x + κθeκt∂y −

(
e−κty + λ (t, x)

)
.

(3.27)

Theorem 3.3. Under the assumptions of Proposition 2.1 and under the general dynamics (3.3), the N -th

order approximation of the CDS spread in (2.2) is given by

RN =

(1− L)

(
1−

N∑
n=0

L
(x,y)
n (0, T )u1

0 (0, x, y;T )−
∫ T

0
e−κs

N∑
n=0

L
(x,y)
n (0, s)u2

0 (0, x, y; s) ds

)
T
M

M∑
i=1

N∑
n=0

L
(x,y)
n (0, ti)u1

0 (0, x, y; ti)

, (3.28)

where

u1
0 (t, x, y, s) = e−

∫ s
t (e−κuy+λ(u,x))du, (3.29)

u2
0 (t, x, y; s) = e−

∫ s
t (e−κuy+λ(u,x))du (y +m2 (t, s)) , (3.30)
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m2(t, s) is the second component of the vector m(t, s) in (3.18) and the differential operators L
(x,y)
n can

be computed explicitly as in Theorem (3.2).

Proof. In formula (2.2) there appear terms of the form

E
[
e−
∫ t
0

(ru+λ(u,Xu))du
]

in the numerator and denominator, that are solutions to problem (3.26) with h(y) = 1. On the other

hand, in (2.2) there also appear terms of the form

E
[
e−
∫ t
0

(ru+λ(u,Xu))durt

]
which are solutions to the same problem with h(y) = e−κty. Theorem 3.2 and (3.24) yield the approxima-

tions

E
[
e−
∫ t
0

(ru+λ(u,Xu))du
]

=

N∑
n=0

L(x,y)
n (0, t)u1

0 (0, x, y; t) + O
(
t
N+2

2

)
, (3.31)

E
[
e−
∫ t
0

(ru+λ(u,Xu))durt

]
= e−κt

N∑
n=0

L(x,y)
n (0, t)u2

0 (0, x, y; t) + O
(
t
N+2

2

)
, (3.32)

as t→ 0+, where

u1
0 (0, x, y, t) = e−

∫ t
0 (e−κuy+λ(u,x))du

∫
R2

Γ0 (0, x, y; t, ξ1, ξ2) dξ1dξ2, (3.33)

= e−
∫ t
0 (e−κuy+λ(u,x))du, (3.34)

and

u2
0 (0, x, y; t) = u1

0 (0, x, y, t)

∫
R2

Γ0 (0, x, y; t, ξ1, ξ2)h (ξ2) dξ1dξ2, (3.35)

= u1
0 (0, x, y, t)

∫
R2

Γ0 (0, x, y; t, ξ1, ξ2) ξ2dξ1dξ2 (3.36)

= u1
0 (0, x, y, t) (y +m2(0, t)) . (3.37)

Remark 3.4. We have an analogous approximation result for the survival probability in (2.12). Since it

can be expressed as the solution to the problem(∂t + A) v (t, x, y) = 0, t < T, x, y ∈ R

v (T, x, y) = 1, x, y ∈ R,
(3.38)
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then, by Theorem 3.2, we have

Q (t) =
∑
n≥0

L(x,y)
n (0, t) v0 (0, x, y;T ) , (3.39)

where v0(t, x, y;T ) = exp
(
−
∫ T
t
λ(u, x)du

)
and the operators L

(x,y)
n (0, t) are defined as in (3.20). As an

example, we give here the explicit first order approximation of the survival probability in the case of

constant parameters a(t) = a and b(t) = b:

v0 (0, x, y;T ) = e−(b+ca2e2(β−1)x)T ,

v1 (t, x, y;T ) = −ce2(β−1)x−T(b+ca2e(β−1)x) (β − 1) a2·

·
−4y + 4θ + e−Tκ

(
4y − 4θ + eTκTκ

(
4y − 4θ + eTκ

(
2 (b+ θ) + (−1 + 2c) e2(β−1)xa2

)))
2κ2

.

These expressions are obtained by using Mathematica symbolic programming. Indeed, by replacing

G(x,y)
n (0, s) and M (x,y)(0, s) by their expressions (3.22) and (3.23) in (3.20), we can write vn(0, x, y;T ) as

follow:

vn (0, x, y;T ) =

n∑
h=1

3n∑
i=0

3n−i∑
j=0

n∑
k=0

n∑
l=0

(x− x̄)
k

(y − ȳ)
l
∂ix∂

j
yv0 (0, x, y;T )F

(n,h)
i,j,k,l (0, T ) , (3.40)

with

F
(n,h)
i,j,k,l (0, T ) =

∫ T

0

∫ T

s1

· · ·
∫ T

sh−1

f
(n,h)
i,j,k,l (0, s1, · · · , sh) ds1 · · · dsh,

and (x̄, ȳ) are chosen and can be time-dependent. The coefficients f
(n,h)
i,j,k,l have already been computed by

symbolic programming with Mathematica and only depend on the coefficients in (3.27), x̄ and ȳ. The final

expressions are very long but very simple and easy to compute for any n > 0. It follows, from integrations

of f
(n,h)
i,j,k,l and partial derivatives of (3.16), the expressions of vn.

4. CDS calibration and numerical tests

In this section we apply the method developed in Section 3 to calibrate the model to market CDS spreads.

We use quotations for different companies (specifically, UBS AG and BNP Paribas) in order to check

the robustness of our methodology. The calibration is based on a two-step procedure: we first calibrate

separately the interest rate model to daily yields curves for zero-coupon bonds (ZCB), generated using

Libor swap curve. Subsequently, we consider CDS contracts with different maturity dates. We use the

approximation formulas (3.28) and (3.39) for the CDS spreads and survival probabilities, respectively. We
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use second-order approximations: we have found these to be sufficiently accurate by numerical experiments

and theoretical error estimates. The formulas for the second-order approximation are simple, making the

method easy to implement.

We distinguish between the uncorrelated and correlated cases: in the first case, i.e. when ρ = 0, the

survival probability, which is not quoted from the market, can be inferred from the CDS spreads through

a bootstrapping formula and therefore it is possible to calibrate directly to the survival probabilities. In

the general case when ρ 6= 0, we calibrate to the market spreads using formula (3.28).

To add more flexibility to the model, we assume that the coefficients a(t) and b(t) in (3.2) are linearly

dependent on time: more precisely, we assume that

a(t) = a1t+ a2, b(t) = b1t+ b2, (4.1)

for some constants a1, a2, b1, and b2.

As defined in (3.3), the stochastic interest rate is described by a Vasicek model

drt = κ (θ − rt) dt+ δdW 2
t . (4.2)

Apart from its simplicity, one of the advantages of this model is that interest rates can take negative

values. For the calibration, we use the standard formula for the price Pt (T ) of a T -bond, which we recall

here for convenience:

Pt (T ) = At (T ) e−Bt(T )rt , (4.3)

where

At (T ) = e

(
θ− δ2

2κ2

)
(Bt(T )−T+t)− δ24κBt(T )2

, Bt (T ) =
1− e−κ(T−t)

κ
. (4.4)

The results of the interest rate calibration are given in Table 1.
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Table 1. Calibration to ZCB.

Times to maturity (years) market ZCB model ZCB error

1. 1.00229 1.00641 -0.410925 %

2 1.00371 1.00844 -0.470717 %

3 1.00333 1.00667 -0.333553 %

4 1.00099 1.00165 -0.0660915 %

5 0.995836 0.993987 0.185689 %

6 0.987867 0.984129 0.378397 %

7 0.977005 0.972476 0.463518 %

8 0.963596 0.959441 0.431229 %

9 0.948371 0.945363 0.317189 %

10 0.933829 0.930451 0.361748 %

κ = 0.06, θ = 0.09, δ = 0.024, r0 = −0.009

4.1. CDS calibration

The problem of calibrating the model (3.3) is formulated as an optimization problem. We want to minimize

the error between the model CDS spread and the market CDS spreads. Our approach is to use the square

difference between market and model CDS spreads. This leads to the nonlinear least square method

inf
Θ
F (Θ) , F (Θ) =

N∑
i=1

ωi|Ri − R̂i|2, (4.5)

where N is the number of spreads used, ωi is a weight, R̂i is the market CDS spreads of the considered

reference entity observed at time t = 0 and Θ = (a1, a2, b1, b2, β, c, ρ), with

a2 ≥ 0, a1 ≥ −
a2

T
, b2 ≥ 0, b1 ≥ −

b2
T

c > 0, β < 1 and − 1 < ρ < 1. (4.6)

In order to calibrate our model to data from real market, we received data from Bloomberg for two large

credit derivatives dealers: UBS AG and BNP Paribas.

4.1.1. Calibration results

In this section, we present the results of calibrating of the model to set of data covering the period from

January, 1st, 2017 to January, 1st , 2023. In both uncorrelated and correlated cases, we can see, in tables

2, 4, 3 and 10, that the model gives very good fit to the market data, particularly to the most liquid

market CDS spreads (2Y, 3Y and 5Y maturities). However we can still observe high relative errors for the

BNP Paribas CDS spread with maturity 4 years due to the market incompleteness or the non-liquidity of

its 4Y maturity CDS observed at January, 1st, 2017. The interesting fact is that the model gives very

12



Table 2. Calibration to UBS AG CDS spreads (uncorrelated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 25.72 25.914 0.754262 %

1.5 30.2627 30.3312 0.226099 %

2. 35.105 34.7814 -0.921671 %

2.5 39.6922 39.2606 -1.08729 %

3. 43.97 43.7645 -0.467301 %

3.5 48.0616 48.289 0.473158 %

4. 52.3 52.8299 1.01328 %

4.5 56.9646 57.3833 0.73514 %

5. 61.91 61.9452 0.0568152 %

5.5 66.8408 66.5115 -0.492607 %

6. 71.285 71.0784 -0.289867 %

a1 = 0.005, a2 = 0.001, β = 0.91, b1 = 0.003, b2 = 0.003, c = 1.4

Table 3. Calibration to UBS AG CDS spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 25.72 25.9622 0.941777 %

1.5 30.2627 30.3606 0.323276 %

2. 35.105 34.787 -0.905712 %

2.5 39.6922 39.2422 -1.13365 %

3. 43.97 43.7262 -0.554424 %

3.5 48.0616 48.2386 0.368363 %

4. 52.3 52.7785 0.914999 %

4.5 56.9646 57.3445 0.666967 %

5. 61.91 61.9345 0.0396039 %

5.5 66.8408 66.5461 -0.44087 %

6. 71.285 71.1762 -0.152671 %

a1 = −0.035, a2 = 0.23, β = 0.66, b1 = 0.003, b2 = 0.0005, c = 0.045, ρ = 0.9

good fit to liquid market CDS and this is confirmed, in the appendix 5.2, by more calibration tests on

CDS spreads of other different companies.

Table 4. Calibration to BNP Paribas CDS spreads (uncorrelated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 34.615 34.0535 -1.62217 %

1.5 39.8758 39.6736 -0.50717 %

2. 45.115 45.4635 0.77257 %

2.5 49.9935 51.4145 2.84236 %

3. 56.11 57.517 2.50765 %

3.5 64.5726 63.7612 -1.25665 %

4. 72.59 70.1364 -3.38005 %

4.5 77.6516 76.6317 -1.31333 %

5. 82.27 83.2357 1.17384 %

5.5 89.1455 89.9366 0.887389 %

6. 96.705 96.7222 0.0177715 %

a1 = 0.018, a2 = 0.085, β = 0.88, b1 = 0.002, b2 = 0.0, c = 0.53
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Table 5. Calibration to BNP CDS spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 34.615 34.0073 -1.7557 %

1.5 39.8758 39.6668 -0.524173 %

2. 45.115 45.4813 0.811846 %

2.5 49.9935 51.4436 2.90047 %

3. 56.11 57.5465 2.56009 %

3.5 64.5726 63.7827 -1.22334 %

4. 72.59 70.1449 -3.36833 %

4.5 77.6516 76.6259 -1.32086 %

5. 82.27 83.2184 1.15283 %

5.5 89.1455 89.9156 0.863835 %

6. 96.705 96.7105 0.00566037 %

a1 = 0.023, a2 = 0.08, β = 0.6, b1 = 0.002, b2 = 0.002, c = 0.3, ρ = 0.96

For the calibration, we used a global optimizer, NMinimize, from Mathematica’s optimization toolbox on

a PC with 1× Intel i7-6599U 2.50 GHz CPU and 8GB RAM. We present in table 6 the computational

times of the calibration of the model to our two corporates in both uncorrelated and correlated cases. One

can conclude that the approximation formula (3.28) gives an efficient and fast calibration.

Table 6. Computational Times

Uncorrelated (second) Correlated (second)

UBS AG 116.856 168.12

BNP Paribas 124.216 161.408

We check the results obtained from the calibration by computing the risk-neutral survival probabilities

with the approximation formula (3.39). In tables 7 and 9, by comparing the real market survival probability

(column 2), our method (column 3) and the Monte Carlo (MC) simulation (column 4), we observe that

the method provides results as good as the MC. The latter is performed with 100000 iterations and a

confident interval of 95%. We do the same test for the correlated case for both corporates and present the

results in tables 8 and 10.

Table 7. Risk-neutral UBS AG survival probabilities (uncorrelated case).

Times to maturity Market probabilities Model probabilities Monte Carlo

1. 0.995724 0.99569 [0.995704, 0.995704]

2. 0.988367 0.988473 [0.988531, 0.988531]

3. 0.978233 0.978335 [0.978468, 0.978468]

4. 0.965644 0.965293 [0.965531, 0.965531]

5. 0.949437 0.949391 [0.949765, 0.949766]

6. 0.93056 0.930706 [0.931249, 0.93125]
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Table 8. Risk-neutral UBS AG survival probabilities (correlated case).

Times to maturity model probability Monte Carlo

1. 0.995724 0.995682 [0.995695, 0.995697]

2. 0.988367 0.988471 [0.988523, 0.988528]

3. 0.978233 0.978353 [0.978479, 0.978486]

4. 0.965644 0.965324 [0.965553, 0.965563]

5. 0.949437 0.949399 [0.949759, 0.94977]

6. 0.93056 0.930619 [0.931142, 0.931152]

Table 9. Risk-neutral BNP Paribas survival probabilities (uncorrelated case).

Times to maturity Market probabilities Model probabilities Monte Carlo

1. 0.994253 0.994339 [0.994358, 0.994359]

2. 0.985077 0.984948 [0.98503, 0.985034]

3. 0.972302 0.97157 [0.971779, 0.971788]

4. 0.952539 0.954016 [0.954445, 0.954462]

5. 0.933285 0.932175 [0.932925, 0.932955]

6. 0.908874 0.906025 [0.907231, 0.90728]

Table 10. Risk-neutral BNP Paribas survival probabilities (correlated case).

Times to maturity market probability model probability Monte Carlo

1. 0.994253 0.994347 [0.994363, 0.994368]

2. 0.985077 0.98494 [0.985012, 0.985034]

3. 0.972302 0.971544 [0.971742, 0.9718]

4. 0.952539 0.953977 [0.95432, 0.954448]

5. 0.933285 0.932115 [0.932728, 0.932973]

6. 0.908874 0.9059 [0.906818, 0.907245]

However, as mentioned above in (3.24), the convergence of the method is in the asymptotic sense; that

is it is asymptotically exact as the maturity goes to zero. To show the dependence of the errors on the

maturity, we plot the market and model survival probabilities in function of maturity in Figure 1. We

observe that, after 6Y, the errors between the market and model survival probabilities start increasing, as

expressed by the error bounds (3.24).

Figure 1. Dependence of the error on the maturity

(a) UBS AG Survival Probability (b) BNP Paribas Survival Probability
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4.1.2. Influence of the correlation

To see the influence of the correlation in our model, we adopt the test done in [1]. Indeed the authors

consider four different payoffs that appear in credit derivatives and compare their present values in very

positive and negative correlation cases, i.e. ρ = 1 and ρ = −1.

A = D (0, 5Y )L (4Y, 5Y )1{ζ<5Y }, B = D (0, 5Y )1{ζ<t}, (4.7)

C = D (0,min (ζ, 5Y )) , H = D (0, 5Y )L (4Y, 5Y )1{ζ∈[4Y,5Y ]}, (4.8)

where ζ is the time of default and L(S, T ) is the market LIBOR rate T > S. We consider the UBS AG

corporate. First we calibrate the model (3.3) to the UBS AG market CDS spreads in both very positive

and negative correlation cases. We obtain the following parameters:

ρ = 1 : a1 = 0.008, a2 = 0.008, β = 0.5, b1 = 0.003, b2 = 0.003, c = 0.68, (4.9)

and

ρ = −1 : a1 = 0.006, a2 = 0.04, β = 0.624, b1 = 0.002, b2 = 0.0004, c = 1.325. (4.10)

Table 11 shows, on one hand, that the correlation has no impact in the payoff of the form B and C. Since

the CDS spread and the risk-neutral survival probability expressions are written as function in terms of

B and C, the correlation has no influence in the computations of the CDS spreads and the risk-neutral

survival probabilities. On the other hand, higher effect can be seen in the values of derivatives including

LIBOR rates (A and H). This explains why in both cases (non-correlation and correlation), our model

gives a very good fit to the market data. It follows that when we want to use the model for pricing

derivatives of types A, H or pricing in general, it is better and much more accurate to consider the model

with correlation.

Table 11. Impact of the correlation

ρ = −1 ρ = 1 Rel. Errors Abs. Errors

A 22.61 bps 90.986 bps +148.50% +0.00135

B 505.482 bps 505.058 bps +0.083% +0.00004

C 9947.149 bps 9948.279 bps -0.011% -0.00011

D 16.244 bps -0.361 bps -548.883% 0.00019

In Section 5.2, we confirm the robustness of our methodology by presenting the results of the calibration

of the model to real market CDS spreads of large credit derivative dealers like CaixaBank SA (Table 12),

Citigroup Inc. (Table 13), Commerzbank AG (Table 14), Deutsche Bank AG (Table 16) and Mediobanca
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S.p.A (Table 15).

5. Appendix

5.1. Mathematical Background

We collect some results on hazard rate and conditional expectation with respect to enlarged filtrations.

We present the key formula which relates the conditional expectation with respect to a “big” filtration to

the conditional expectation with respect to a “small” filtration. For more about filtration enlargement, we

refer for instance to [7].

Let ζ be a non-negative random variable on a probability space (Ω,G,Q), such that Q(ζ = 0) = 0

and Q(ζ > t) > 0 for any t ≥ 0. We introduce a right-continuous process D defined as Dt = 1{ζ≤t}, and

we denote by D the filtration generated by D; that is Dt = σ(Du | u ≤ t). Let F = (Ft)t≥0 be a given

filtration on (Ω,G,Q) such that G := D ∨ F; that is we set Gt := Dt ∨ Ft for every t ∈ R+. Since Dt ⊆ Gt
for any t, the random variable ζ is a stopping time with respect to G. The financial interpretation is that

the filtration F models the flow of observations available to the investors prior to the default time ζ. For

any t ∈ R+, we write Ft = Q(ζ ≤ t|Ft), so that 1 − Ft = Q(ζ > t|Ft): notice that F is a bounded and

non-negative F-submartingale. We may thus deal with its right-continuous modification.

Definition 5.1. The F-hazard process of ζ, denoted by Γ, is defined through the formula 1− Ft = e−Γt

for every t ∈ R+.

Lemma 5.2. We have Gt ⊂ G∗t , where

G∗t := {A ∈ G | ∃B ∈ Ft A ∩ {ζ > t} = B ∩ {ζ > t}} . (5.1)

Proof. Observe that Gt = Dt ∨ Ft = σ(Dt,Ft) = σ({ζ ≤ u} , u ≤ t,Ft). Also, it is easily seen that the

the class G∗t is a sub−σ-field of G. Therefore, it is enough to check that if either A = {ζ ≤ u} for u ≤ t or

A ∈ Ft, then there exists an event B ∈ Ft such that A ∩ {ζ > t} = B ∩ {ζ > t}. Indeed, in the former

case we may take B = ∅, in the latter B = A.

Lemma 5.3. For any G-measurable random variable Y we have, for any t ∈ R+

E
[
1{ζ>t}Y |Gt

]
= 1{ζ>t}

E [Y |Ft]
Q(ζ > t|Ft)

= 1{ζ>t}e
ΓtE

[
1{ζ>t}Y |Ft

]
. (5.2)

Proof. Let us fix t ∈ R+. In view of the Lemma 5.2. any Gt-measurable random variable coincides on the

set {ζ > t} with some Ft-measurable random variable. Therefore

E
[
1{ζ>t}Y |Gt

]
= 1{ζ>t}E [Y |Gt] = 1{ζ>t}X, (5.3)
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where X is an Ft-measurable random variable. Taking the conditional expectation with respect to Ft, we

obtain

E
[
1{ζ>t}Y |Ft

]
= Q(ζ > t|Ft)X. (5.4)

Proposition 5.4. Let Z be a bounded F-predictable process. Then for any t < s ≤ ∞

E
[
1{t<ζ≤s}Zζ |Gt

]
= 1{ζ>t}e

ΓtE

[∫
]t,s]

ZudFu|Ft

]
. (5.5)

Proof. We start by assuming that Z is a piecewise constant F-predictable process, so that (we are

interested only in values of Z for u ∈]t, s])

Zu =

n∑
i=0

Zti1]ti,ti+1](u), (5.6)

where t = t0 < . . . < tn+1 = s and the random variable Zti is Fti-measurable. In the view of (5.2), for

any i we have

E
[
1{ti<ζ≤ti+1}Zζ |Gt

]
= 1{ζ>t}e

ΓtE
[
1{ti<ζ≤ti+1}Zti |Ft

]
(5.7)

= 1{ζ>t}e
ΓtE

[
Zti(Fti+1 − Fti)|Ft

]
. (5.8)

In the second step we approximate an arbitrary bounded F-predictable process by a sequence of piecewise

constant F-predictable process.

Corollary 5.5. Let Y be a G-measurable random variable. Then, for any t ≤ s, we have

E
[
1{ζ>s}Y |Gt

]
= 1{ζ>t}E

[
1{ζ>s}e

ΓtY |Ft
]
. (5.9)

Furthermore, for any Fs-measurable random variable Y we have

E
[
1{ζ>s}Y |Gt

]
= 1{ζ>t}E

[
eΓt−ΓsY |Ft

]
. (5.10)

If F (and thus Γ) is a continuous increasing process then for any F-predictable bounded process Z we have

E
[
1{t<ζ≤s}Zζ |Gt

]
= 1{ζ>t}E

[∫ s

t

Zue
Γt−ΓudΓu|Ft

]
. (5.11)

Proof. In view of (5.2), to show that (5.9) holds, it is enough to observe that 1{ζ>s} = 1{ζ>t}1{ζ>s}.

Equality (5.10) is a straightforward consequence of (5.9). Formula (5.11) follows from (5.5) since, when F

is increasing, dFu = e−ΓudΓu.
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5.2. Further calibration tests

In this section, we collect some calibration tests of the model with correlation to real market data of some

large companies.

Table 12. Calibration to Caixa Bank SA CDS spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 76.655 76.8783 0.291366 %

1.5 85.1622 83.5574 -1.88441 %

2. 90.115 90.4517 0.373677 %

2.5 96.1837 97.5516 1.42216 %

3. 103.465 104.847 1.33529 %

3.5 111.251 112.325 0.965738 %

4. 120.19 119.976 -0.177871 %

4.5 130.524 127.787 -2.09744 %

5. 139.515 135.743 -2.70359 %

5.5 144.723 143.832 -0.615569 %

6. 147.885 152.039 2.80874 %

a1 = 0.029, a2 = 0.1, β = 0.9, b1 = 0.002, b2 = 0.007, c = 0.28, ρ = 0.9

Table 13. Calibration to Citigroup Inc CDS spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 23.86 24.0532 0.80977 %

1.5 28.1143 28.2493 0.480115 %

2. 33.45 32.6986 -2.24632 %

2.5 37.9995 37.393 -1.5961 %

3. 42.135 42.3335 0.471192 %

3.5 46.6976 47.5358 1.79501 %

4. 52.165 53.0361 1.66997 %

4.5 58.7451 58.8977 0.259815 %

5. 65.93 65.2171 -1.08133 %

5.5 73.0353 72.1307 -1.23864 %

6. 79.385 79.8203 0.548391 %

a1 = 0.01, a2 = 0.04, β = −2.67, b1 = 0.0006, b2 = 0.0, c = 1.9, ρ = 0.9
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Table 14. Calibration to Commerzbank AG CDS spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 44.69 44.7819 0.205608 %

1.5 53.9328 54.0445 0.207137 %

2. 63.175 63.0747 -0.158831 %

2.5 71.8376 71.8844 0.0651909 %

3. 80.285 80.4911 0.256673 %

3.5 88.977 88.9161 -0.0684516 %

4. 97.81 97.1835 -0.640533 %

4.5 106.475 105.319 -1.08584 %

5. 114.405 113.349 -0.923244 %

5.5 121.117 121.298 0.149436 %

6. 126.73 129.192 1.94273 %

a1 = −0.002, a2 = 0.08, β = −2.7, b1 = 0.005, b2 = 0.0, c = 0.6, ρ = 0.6

Table 15. Calibration to Mediobanca SpA spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 87.545 87.4557 -0.101987 %

1.5 96.831 96.8623 0.0323408 %

2. 106.715 106.688 -0.0252551 %

2.5 116.657 116.678 0.0176859 %

3. 126.405 126.621 0.170711 %

3.5 135.88 136.343 0.340403 %

4. 145.42 145.703 0.19438 %

4.5 155.159 154.586 -0.369086 %

5. 164.01 162.903 -0.674879 %

5.5 170.956 170.583 -0.218563 %

6. 176.485 177.572 0.615901 %

a1 = −0.04, a2 = 0.93, β = −1.7, b1 = −0.002, b2 = 0.01, c = 0.0004, ρ = 0.82

Table 16. Calibration to Deutsche Bank AG spreads (Correlated case).

Time to Maturities Market CDS spread (bps) Model CDS spread (bps) Rel. Errors

1. 67.02 66.42 -0.895209 %

1.5 77.7864 79.1848 1.79767 %

2. 92.015 92.5289 0.558545 %

2.5 107.233 105.796 -1.33972 %

3. 120.505 118.488 -1.67348 %

3.5 129.985 130.235 0.192996 %

4. 138.645 140.774 1.53567 %

4.5 149.244 149.928 0.458061 %

5. 158.86 157.592 -0.798277 %

5.5 164.376 163.718 -0.400654 %

6. 167.59 168.305 0.426501 %

a1 = −0.1, a2 = 1.55, β = −0.08, b1 = −0.001, b2 = 0.006, c = 0.0003, ρ = 0.83
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