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Abstract

Models continue to increase their already broad use across industry as well as their sophistication. Worldwide regula-
tion oblige financial institutions to manage and address model risk with the same severity as any other type of risk, e.g.
Federal Reserve (SR 11–7) (2011), which besides defines model risk as the potential for adverse consequences from
decisions based on incorrect and misused model outputs and reports. Model risk quantification is essential not only
in meeting these requirements but for institution’s basic internal operative. It is however a complex task as any com-
prehensive quantification methodology should at least consider the data used for building the model, its mathematical
foundations, the IT infrastructure, overall performance and (most importantly) usage. Besides, the current amount of
models and different mathematical modelling techniques is overwhelming.

Our proposal is to define quantification of model risk as a calculation of the norm of some appropriate function that
belongs to a Banach space, defined over a weighted Riemannian manifold endowed with the Fisher–Rao metric. The
aim of the present contribution is twofold: Introduce a sufficiently general and sound mathematical framework to cover
the aforementioned points and illustrate how a practitioner may identify the relevant abstract concepts and put them to
work.
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1. Introduction

Models are simplifying mappings of reality to serve a specific purpose aimed at applying mathematical, financial
and economic theories to the available data. They focus on specific aspects of the reality and degrade or ignore the
rest. There are always some areas that are deliberately left out of the model, as they are viewed as being irrelevant for
the specific model purpose. As such, understanding the capabilities and limitations of the underlying assumptions is
a key when dealing with a model and its outputs. Besides, not only the model limitations, but the materiality of their
consequences are of interest in the management of model risk. Wrong design or implementation, misuse or inadequate
knowledge regarding the model development and usage, may lead to exposing a bank to additional risks. Thus, the
implied objective is to determine where models are useful ’enough’ while understanding and managing their integral
limitations implied by and inherent to their boundary conditions as wilful abstractions.

According to the Federal Reserve (SR 11–7) (2011) model risk is defined as
"[. . . ] the potential for adverse consequences from decisions based on incorrect or misused model outputs
and reports. Model risk can lead to financial loss, poor business and strategic decision making, or damage
to bank’s reputation. Model risk occurs primarily for two reasons:

• the model may have fundamental errors and may produce inaccurate outputs when viewed against
the design objective and intended business uses

• the model may be used incorrectly or inappropriately"

They state that model risk should be managed and addressed with the same severity as any other type of risk and
that banks should identify the sources of model risk and assess their magnitude. Further, they emphasize that expert
modelling, robust model validation and a properly justified approach are necessary elements in model risk moderation,
though they are not sufficient and should not be used as an excuse for not improving models.
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In spite of the rise of awareness of model risk and understanding its significant impact, there are no globally defined
industry and market standards on its exact definition, management and quantification, even though a proper model risk
management is required by regulators. Furthermore, there is a widespread lack of clarity as to what model risk manage-
ment should achieve, and about which tools should be used for the purpose.

Within the finance literature, some authors have defined model risk as the uncertainty about the risk factor distribu-
tion (Gibson (2000)), the misspecified underlying model ( Cont (2006)), the deviation of a model from a ’true’ dynamic
process (Branger and Schlag (2004)), the discrepancy relative to a benchmark model ( Hull and Suo (2002)), and the
inaccuracy in risk forecasting that arises from the estimation error and the use of an incorrect model (Boucher et al.
(2014)). Model risk has been classified previously in all asset classes, see Morini (2011) for interest rate products and
credit products, Christodoulakis and Satchell (2008) for portfolio applications, Saltelli et al. (2013) for asset backed
securities, and Boucher et al. (2014) for relation to measuring marker risk.

The quantification, as an essential part of model risk management, is required for a consistent management and ef-
fective communication of model weaknesses and limitations to decision makers and users and to assess model risk in the
context of the overall position of the organization. The main complication in assessing model risk arises in the context
of quantifying uncertainty which stems from the selection of the mathematical techniques (e.g. focusing on fitting a
normal distribution), the calibration methodology (e.g. different optimization algorithms may derive different parameter
values), and from the limitations on the sample data (e.g. sparse or incomplete database). The current methods for
quantifying model risk available in the literature fail to deploy a common scale to simultaneously assess the alternative
sources of model risk and their impacts on usage and decision–making. Further, they are limited to very specific types
of models, and at times provide a risk rating instead of risk quantification.

Model risk quantification poses many challenges stemming from the high diversity of models, the wide range of
techniques, the different use of models, and a large number of model owners. Some model outputs drive decisions;
other model outputs provide one source of management information among many, some outputs are further used as an
inputs in other models; additionally, the model outputs may be completely overridden by expert judgement. Further-
more, model risk arises in every stage of model development lifecycle. Besides, to quantify model risk you need another
model, which is again prone to model risk and thus a vicious cycle of risks gets created.

The most relevant areas of analysis for the quantification of model risk are: data and calibration, model foundation,
model performance, IT infrastructure, model use, controls and governance, model sensitivity and scenario analysis. The
model may be fundamentally wrong due to the errors in theoretical foundation and conceptual design that emerge from
incorrect logic or assumptions, model misspecification or omission of variables. Data quality issues, inadequate sample
sizes and outdated data contribute to model performance issues such as instability, inaccuracy or bias in model forecasts.
Model risk also arises from inadequate controls over the model use. For example, unreported models resulting in un-
measured model risk, unapproved model use, improperly used models, and inadequate understanding of model limits or
uncertainty. Wrong development and implementation in software systems, incorrect application, and unapproved on-top
adjustments can result to model control issues and errors. Flawed test procedures or failure to perform consistent and
comprehensive user acceptance tests can lead to material model risk. Thus, one has to realize that even appropriately
applied and correctly used models can produce model errors, and that perfectly accurate model results can be misused
or misapplied.

The focus of this paper is on developing a novel approach for quantifying model risk within the framework of dif-
ferential geometry (Murray and Rice (1993)) and information theory (Amari et al. (1987)). In this work we introduce
a measure of model risk on a statistical manifold where models are represented by a probability distribution function.
Differences between models are determined by the geodesic distance (under the Fisher–Rao metric), that is a symmetric,
inner metric that allows us to utilize the intrinsic structure of the manifold of densities and to respect the geometry of
the space we are working on, i.e. it accounts for the non–linearities of the underlying space.

The rest of this paper is structured as follows. In section 2, we summarize basic facts about Riemannian geometry
and introduce the terminology used throughout the paper. Modeling process steps and a general description of our
proposed method for quantification of model risk are presented in Section 3, which is followed by a detailed discussion
on the main quantification steps. Section 4 to 6 describe the construction of the neighbourhood containing material
variations of the model, and the definition and construction of the weight function. The model risk measure is then
defined and explained in Section 7. Finally, Section 8 provides some final conclusions and directions for future work.
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2. Background on Riemannian Geometry

In this section, we summarize some basic facts about Riemannian geometry and introduce the necessary notation for
the rest of the paper. The details can be found among other standard references in Amari et al. (1987), Murray and Rice
(1993), Chavel (2006) and Do Carmo (1992).

In the following, we denoteM a compact and connected manifold without boundary equipped with a Riemannian
metric < ·, · > and a Riemannian connection 5, with TpM the tangent space at a point p ∈ M. The distance metric
d(p, q) between two point p and q onM is given by

d(p, q) := inf
γ

∫ b

a

||γ′(t)||dt

where γ ranges over all differentiable paths ω : [a, b] →M satisfying γ(a) = p and γ(b) = q, and ||γ′||2 =
〈
γ′, γ′

〉
.

The distance metric d(·, ·) turnsM into a metric space.

A Riemannian manifoldM is endowed with a Riemannian metric that is a correspondence which associates to each
point p ∈M an inner product < ·, · >p on TpM that varies from point to point. One natural metric on the Riemannian
manifoldM is the Fisher–Rao information metric (Rao (1945)) with entries given by

Iij(p) = gij(p) = E
[∂ log(p)

∂xi
∂ log(p)

∂xj

]
=

∫
p
∂ log(p)

∂xi
∂ log(p)

∂xj
dx (1)

The Fisher–Rao information metric is uniquely determined the invariance under sufficient re–parameterizations ( Amari
et al. (1987)). The det I(p) represents the amount of information a sample point conveys with respect to the problem of
estimating the parameter x, and so I(p) can be used to determine the dissimilarities between distributions.

Under a square–root representation, the Fisher–Rao metric becomes the standard L2 metric and the space of prob-
ability density functions becomes the positive orthant of the unit hypersphere in L2 (Lang (2012)). The square–root
mapping is defined as a continuous mapping φ : M → Ψ where Ψ is the space containing the positive square–root of
all possible density functions. Using this mapping, we define the square–root transform of probability density functions
as φ(p) = ψ =

√
p, where ψ is assumed to be non–negative to ensure uniqueness. We can compute quantities of interest

in this orthant and then map them back to M using the inverse mapping, φ−1(ψ) = p = ψ2. The space of all such
functions is defined as

Ψ =
{
ψ(x)

∣∣∣ ∫
X
|ψ(s)|2ds = 1,∀s ψ(s) ≥ 0, x ∈ X

}
where X is the sample space. In this case, the associated natural Hilbert space, H, equipped with a symmetric inner
product, gij , induces a spherical geometry, i.e. the sum

∑
(
√
p)2 is equal to unity (Lang (2012)). If the density function

is parametrized by the set of parameters θ = (θ1, . . . , θn) then for each value of θi we have a corresponding point on
the unit sphere S inH. In this setting the geodesics are available in closed form and can hence be computed quickly and
exactly. For any two tangent vectors v1, v2 ∈ TψΨ, the Fisher–Rao metric is given by

〈
v1, v2

〉
=

∫
R
v1(s)v2(s)ds =

〈
∂{p(·, θ)}1/2

∂θi
,
∂{p(·, θ)}1/2

∂θj

〉
=

1

4
gij (2)

The geodesic on the sphere and the distance given two points ψ1, ψ2 are given by

γ(t) = cos(t||v||)ψ + sin(t||v||) v

||v||
d(ψ1, ψ2) = cos−1(

〈
ψ1, ψ2

〉
)

Since the compactness of M implies geodesic completeness (Chavel (2006)), there exists for every p ∈ M and
v ∈ TpM an unique geodesic γ : R → M satisfying γ(0) = p and γ′(0) = v. Moreover, the Hopf–Rinow Theorem
(Hopf and Rinow (1931)) ensures that any two points p, q ∈ M can be joined by a minimal geodesic of length equal to
the distance between the points, d(p, q). Through the geodesic γ, one can define the exponential map expp : TpM→M
by

expp tv := γ(t), ∀t ∈ R, ∀v ∈M
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The exponential map for square–root transformation (Joshi et al. (2007)) has the form

expψi tv := cos
(
||tv||ψi

)
ψi + sin

(
||tv||ψi

) tv

||tv||ψi

where v ∈ Tψi(Ψ) is a tangent vector at ψi and ||v||2ψi =
〈
v, v
〉
ψi

. The inverse exponential map from ψi to ψj is given
by

exp−1
ψi

(ψj) :=
u

sin(u)

(
ψj − cos(u)ψi

)
. (3)

Next, we turn to the notions of cut point and cut locus. For every vector v ∈ TpM we define

F (v) := sup
t>0
{tv ∈ TpM : d(p, γv(t)) = t}

as the maximal distance in direction v for which expp is isometric. The point γ(F (v)) = expp(F (v)v) is referred to as
the cut point of p along the geodesic γ(t) ([20]). Let S(p, 1) be a unit sphere on tangent space, the largest open subset
ofM in which the exponential map of a point p is diffeomorphic is Dp = expp(V (p)), where V (p) = {tv : 0 ≤ t <
F (v), v ∈ S(p, 1)}. The cut locus of p is then defined as Cp = expp{F (v)v : v ∈ S(p, 1), F (v)is finite}. Note that
M = Dp ∪ Cp.

An open set U ⊂M is said to be a normal neighbourhood of p0 ∈ U , if expp0 is a diffeomorphism on a neighbour-
hood V of the origin of Tp0M onto U , with V such that tv ∈ V for 0 ≤ t ≤ 1, if v ∈ V .

3. Modeling Process Steps and Quantification of Model Risk

Model risk cannot easily be spoken of as a single entity. There are different types and aspects of model risk that
tend to easily overlap, co–occur, or co–vary. However, by viewing model risk in terms of a process of steps from design
to implementation we can gain an understanding of particular areas where more attention is needed in the process of
designing, validating, and implementing models. In this context, we propose four rough model creation steps: Data,
Calibration, Model Selection and Testing, and Implementation and Usage. This may occur in an iterative fashion, but
they result in a general linear flow that ends with institutional use (implementation and maintenance) to direct decision
making (often encoded into an IT system). Limitations in any of these areas can impair reliance on model results.

1. Data refers to the definition of the purpose for modeling, the specification of the modeling scope, human and
financial resources, the specification of data and other prior knowledge, their interpretation and preparation. The
data may be obtained from both internal and external sources, and they are further prepared by cleaning and
reshaping into a readily usable form for performing next steps of model development. Model risk may arise from
data deficiencies in terms of both quality and availability, including, among others, error in data definition, lack of
historical depth, lack of critical variables, insufficient sample, data migration, inaccurate proxies, high sensitivity
of expert judgments, or wrong interpretation.

2. Calibration includes the selection of the types of variables and the nature of their treatment, the adjustments and
tuning of free parameters to fit the model outputs, as well as links between system components and processes.
Model risk or estimation uncertainty may occur due to errors in simplifications, approximations, flawed and
inadequate assumptions, inappropriate calibration due to lack of data, wrong selection of some relevant subset,
errors in statistical estimation or in market benchmarks which may lead to the decay in predictive power between
re–estimations, limitations of the optimization algorithm, complexity of the problem, computational limitations,
or use of unobservable parameters, among many others.

3. Model Selection and Testing involves the choice of estimation performance criteria and techniques, the iden-
tification of model structure and parameters, which is generally an iterative process with the underlying aim to
balance sensitivity to system variables against complexity of representation. Further, it is related to the conditional
verification which includes testing the sensitivity to changes in the data and to possible deviations of the data and
system from the initial assumptions. In this step, model risk stems from, e.g., inadequate and incorrect modeling
assumptions, outdated model due to parameter decalibration, model instability, use of new methodology not sup-
ported by academic research or not well–known methodologies, model misspecification, insufficient analytical
capabilities, deviance from modeled process, or lack of market consensus on the model’s functional form.

4. Implementation and Usage refers to the deployment of the model into production which is followed by a regular
maintenance and monitoring. Sources of model risk in this step include using the model for unintended purposes,
lack of re–estimation and re–calibration, IT failures, lack of communication between modelers and users, lack of
understanding on model limitations, and differences between regulatory and management practices.
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Certain risk factors may be mitigated at source by proper validation process, internal audit, monitoring, controls, skilled
employees, underwriting, operational practices or by application of an expert judgment, they can never be eliminated.

Quantification of model risk, from a best practice perspective, should be quick and reliable, without refitting or
building models, without reference to particular structure and methodologies, and with prioritizing analysis (getting im-
mediate assurance on shifts that are immaterial). The base for such an approach offers the rich framework of differential
geometry and information theory. In this framework, a model is represented by a particular probability distribution,
p : X → R+ that belongs to the set of probability measuresM, so called statistical manifold, available for modelling.
The manifoldM can be further equipped with the information–theoretic geometric structure that, among other things,
allows us to quantify variations and dissimilarities between probability distribution functions (models).

The set of possible probability measures may be further parametrized in a canonical way by a parameter space Θ,
i.e.M = {p(x; θ) : θ ∈ Θ}. This set forms a smooth Riemannian manifoldM, so called model manifold, embedded in
the space of all distributions. Every distribution is a point in this space, and the collection of points created by varying
the parameters of the model, p ∈M, gives rise to a hypersurface ( a parametric family of distributions) in which similar
distributions are mapped to nearby points. The model manifold can be either a low dimensional parametric space as in
parametric statistics, or the space of all possible models as in non–parametric statistics. The natural Riemannian metric
is shown to be the Fisher–Rao metric (Rao (1945)) which is the unique intrinsic metric on the statistical manifold. As
aforementioned, it is the only metric that is invariant under re–parametrization (i.e., coordinate transforms) (Amari et al.
(1987)).

Let us consider a given model p0. We assume that the examined model can be uniquely parametrized1 using the
n–dimensional vector parameter θ0 = (θ1

0, . . . , θ
n
0 ) over the sample space X and can be described by the probability

distribution p0 = p(x; θ0) with respect to the Lebesgue measure, i.e. p0 belongs to the n–dimensional statistical
manifold2. This probability distribution belongs to a set (family) of distributions M = {p(x; θ) : θ ∈ Θ ⊂ Rn}
that forms a model manifold. We assume that for each x ∈ X the function θ 7→ p(x; θ) is C∞. Thus, M forms
a differentiable manifold and we can identify models in the family with points on this manifold. Since the set of all
density functions on X is a subset of the L1 space of functions in X ,M is considered to be a subset of the L1 space.
Choosing a particular model is the same as fixing a parameter setting θ ∈ Θ.

Example

To help fix ideas, we introduce an illustrative simple example and develop it further throughout the paper. Let X
denote a vector of profit and loss, P&L, over a two year time horizon (520 days) that is used to calculate the Value at
Risk (VaR). VaR is derived from a distribution of P&L as the quantile loss at the portfolio level and is defined by

P(X ≤ V aR) = 1− β

where β is the confidence level, set to 99.9%. The output of the VaR is then further used either for risk measure-
ment or decision making in risk management. Assume that the given model considers X to be normally distributed
p0 = N (µ0, σ0) with parameters µ0 = 2, σ0 = 10 once calibrated. This model belongs to a family of normal distribu-
tions that forms a differentiable manifoldM = {p(x;µ, σ) : µ ∈ R, σ > 0} where µ is the mean and σ is the standard
deviation. Every point p ∈M corresponds to a normal distribution p(x, θ) with θ = (µ, σ).

In our univariate normally distributed case parametrized by a 2–dimensional space, θ = (µ, σ), the Riemannian

1In case of non–parametric probability distributions we can construct a unique vector of canonical parameters θ = (θ1, . . . , θn) via invertible
mappings θi = log(pi/p0), ∀i, where the chosen model p0 stands for the reference probability and pi are other models in the manifold. These
canonical parameters may stand as a global coordinate system for P .

2Note that this does not impose any restrictions. For a general non–statistical manifold, e.g. a model familyN parametrized byψ = (ψ1, . . . , ψd)

but not represented by a probability distribution, one needs to construct mappings fromN toM. Following such a mapping, any tangent vector
∂

∂ψi

of N can be pushed forward to TpM as
∂

∂ψi
=
∑n
k=1

(
∂θk

∂ψi

∂

∂θk

)
. In this way, the inner product

〈 ∂

∂ψi
,
∂

∂ψj

〉
can be used to define a

Riemannian metric.
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matrix defined by 2 is given by

I = [Iij(µ, σ)] =

 1

σ2
0

0
2

σ2

 =

[
0.01 0

0 0.02

]
.

�

We define the model risk for a given model p0 at the scale of an open neighbourhood around p0 that contains
alternative models that are not too far in a sense quantified by the relevance to (missing) properties and limitations of
the model (i.e., the uncertainty connected with the model selection). The model risk is then measured with respect to
all models inside this neighbourhood as a norm of an appropriate function of the output differences over a weighted
Riemannian manifold endowed with the Fisher–Rao metric and the Levi–Civita connection3. The analysis consists of
five steps:

1. Embedding of the model manifold into one that considers missing properties4 in the given model p0.
2. Choosing a proper neighbourhood around the given model.
3. Choosing an appropriate weight function, that assigns relative relevance to the different models inside the neigh-

bourhood.
4. Calculating the measure of model risk with respect to all models inside the neighbourhood, through the corre-

sponding norm.
5. Interpretation of the measure with respect to the specific use of the model risk quantification.

Each step addresses and aligns different limitations of the model and the uncertainty in various areas related to the
model5. In the following sections we further develop these steps and describe the intuition behind.

4. Neighbourhood Around the Model

Recall that the given model p0 belongs to a n–dimensional manifoldM where each dimension represents different
piece of information inherited in p0. To consider missing properties, the uncertainty surrounding the data and the cali-
bration, the additional information about the limitations of the model, or wrong underlying assumptions, we may need
to adjoin a new dimensions to M, and thus, consider a higher–dimensional space within which M is embedded for
further analysis.

The proper neighbourhood around p0 we define by the help of the tangent space Tp0M at a point p0. Tp0M is a
vector space that describes a first order approximation, infinitesimal displacements or deformations on the manifold in
the position of the point p0. Intuitively, it contains all possible directions of the qualitative and quantitative variations
of the given model p0 within the selected manifold as a response to new information or changes in the underlying as-
sumptions. From a practical point of view, not all perturbations are relevant, e.g., variations that are not supported by
the market, business or past experience. Thus, taking into account the materiality with respect to the intended purpose
of the model, its usage, business and market, we consider only a small subset of the tangent space.

We define the open set, U , around p0 as a subset of some normal neighbourhood V such that

U := {tv ∈ V ⊂ Tp0M : 0 < t ≤ α(v) ≤ injp0 , v ∈ Sp0M}

This set provides a class of directions of all relevant perturbations of the model p0 up to a certain level α(v). The level
α(v) depends on the tangent vectors, since the degree of our uncertainty on p0 might not be constant across the canonical
parameter space; for instance we could assume more uncertainty in the tails of the distribution p0 than in its body. We
can interpret α(v) as a means to control uncertainty regarding the choice of the model p0, and it is appropriately chosen
based on the intended purpose of the model, usage and business. Besides, the optimal level of α(v) depends on the

3The Levi–Civita connection parallely transports tangent vectors defined at one point to another and is compatible with the geometry induced by
the Riemannian metric (Amari et al. (1987)). Additionally, for this choice of connection, the shortest paths are geodesics.

4Or properties not appropriately modelled, for which there is no consensus, cannot be adequately calibrated, among many others.
5Such as data, calibration, model selection, model performance, model sensitivity and scenario analysis, and most importantly the usage of the

model
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uncertainty surrounding the nature of the data and calibration.

Since U is a subset of the normal neighbourhood around p0, the exponential map is well defined and we can construct
a corresponding set of models close enough to p0. The subset ofM containing these models is defined as

U := expp0(U) = {p ∈M : d(p0, p) ≤ α(v)}

From now on, we shall require the boundary ∂U = {α(v)v|v ∈ Sp0M} to be continuous and piecewise regular.
Moreover, U shall be a star–shaped set with respect to p0 that is defined as follows:

Definition 1. A compact subset U of a Riemannian manifold M is called star–shaped with respect to p0 ∈ U if
∀p ∈ U, p 6= p0 there exists a minimizing geodesic γ with γ(0) = p0 and γ(Tp) = p such that γ(t) ∈ U for all
t ∈ [0, Tp], where Tp > 0.

One advantage of the exponential map in this setting is that we can avoid calibration of different alternative models
inside U . For each unit vector v ∈ U there exists a unique geodesic connecting points on the boundary of U with the
point p0. This geodesic is given by γ(t) = expp0(t|v|) for t ∈ [0, α(v)].

Example

Demonstrating that the model is suitable for intended purpose is a critical part of the analysis of model risk. For
illustrative purposes, we focus in our example only on the uncertainty about the selected statistical distribution. We want
to evaluate the impact of relaxing the assumption of symmetry for the underlying P&L distribution, i.e. the impact of
not including the skew in the model. Hence, we embed the model manifoldM into a larger manifold of skew–normal
distributions, M̄ = {p(x;µ, σ, s) : µ ∈ R, σ > 0, s ∈ R}, where µ is the location, σ the scale parameter, and s the
shape parameter (Azzalini (1985)). Note, that for s = 0, we re–obtain the initial normal distribution, N (µ, σ). The
skew normal distribution family emerges to take into account the skewness property.

After considering various time windows, data sequences, fittings and estimates, we determine the neighbourhood
of our model to be the geodesic connecting the base model, p0 = N (2, 10) = SN (2, 10, 0), and the skew–normal
distribution, p1 = SN (µ, σ, s), with parameters µ = 1.95, σ = 9.98, and s = 2. The geodesic distance between these
two distributions is d(

√
p0,
√
p1) = 0.6809. To form the neighbourhood, we first construct the related perturbation

tangent vector associated with the directions to the boundary point,
√
p1, using the inverse exponential map defined by

3

vp1 = exp−1√
p0

(√
p1

)
=
[ 0.6809

sin(0.6809))

(√
p1 − cos

(
0.6809)

)√
p0

)]
This provides a class of variations of the initial model by moving away from it in the direction vp1 which determines the
whole neighbourhood U given by

U = {γ(t) = (exp√p0(tvp1))2; t ∈ [0, 1]}

with boundaries ∂1U = {p0} and ∂2U = {p1} Thus, by varying t from 0 to 1, one traces the geodesic path from p0 to
p1, and we obtain a set of all distributions in the directions p1. The neighbourhood U around p0 includes all distributions
on the geodesic γ for t ∈ [0, 1].

�

5. Weight Function Definition

Variations of the chosen model are not equally material and they all might take place with different probabilities.
By placing a non–linear weight function (kernel), K, over the set U we can easily place relative relevance to each al-
ternative model, and assign the credibility of the underlying assumptions that would make alternative models partially
or relatively preferable to the nominal one p0. The particular choice of the structure of the kernel depends on various
factors, such as usage of the model, distance from p0, or sensitivity to different changes. Additionally, it may as well be
influenced by the importance of the outcomes with connection to decisions making, by the business, or by its intended
purpose.
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In what follows, we define a general weight function K, and show that under certain conditions it is well de-
fined and unique. In general, we consider K to be a non–negative and continuous function that depends on the local
geometry of M by incorporating a Riemannian volume6 associated to the Fisher–Rao information metric given by
dv(p) =

√
det(I(θ))dθ. The volume measure is the unique Borel measure onM (Federer (2014)). With respect to a

coordinate system, the information density of p represents the amount of information the single model possesses with
respect to the parameters. For example, a small dv(p) means that the model contains much uncertainty and requires
many observations to learn.

As the underlying factors7 that influence the perturbations of the given model happen with some likelihood, we treat
all models insideM as random objects. As a consequence, we require K to be a probability distribution with respect
to the Riemannian volume, i.e.

∫
MKdv(p) = 1. With this assumption we prescribe the corresponding weights but

also our belief about the likelihood of the models. Additionally, we state that the right model does not exist and that the
choice of p0 was to some extent a subjective preference.

Definition 2. An admissible weight function K defined onM satisfies the following properties:

(K1′) K is continuous onM

(K2′) K ≥ 0 for all p ∈M

(K3)
∫
MKdv(p) = 1

Recall that to compute the n–dimensional volume of the objects inM, one considers a metric tensor on the tangent
space TpM at the point p ∈ M. In particular, the Fisher–Rao information metric I onM maps each point p ∈ M to
a volume dv(p) which is a symmetric and bilinear form that further defines an n–dimensional volume measure on any
measurable subset U ⊂ M by V ol(U) :=

∫
U
dv(p). A smooth probability distribution K overM with respect to the

Riemannian measure induces a new absolutely continuous probability measure ζ with respect to V ol, that is,

ζ(U) =

∫
U

dζ =

∫
U

Kdv(p) (4)

for all measurable U ⊂ M, and ζ(M) = 1. The pair (M, ζ) is then called a weighted manifold, or a Riemannian
metric–measure space and is proved to be a nontrivial generalization of Riemannian manifolds (Morgan (2005)).

The weight function K of the Definition 2 represents a general characterization of a probability distribution over the
Riemannian manifoldM. To tune K for proper analysis of model risk, we need to impose additional properties which
are connected with the specific uncertainties surrounding the given model.

From a practitioner point of view, the materiality of perturbations of the given model is bounded. Models that do
not belong to the chosen neighbourhood U are not relevant from the perspective of model risk, and so do not add any
uncertainty. Therefore, we assume the weight function to be non–negative only over the neighbourhood U and zero
elsewhere. Moreover, translation of the changes in various underlying assumptions, data or calibration into the changes
in output and further usage of the model are going to vary with respect to the direction of the change. Hence, we require
K to be continuous along the geodesic curves γ uniquely determined by v ∈ S(p0, 1) ⊂ Tp0U starting at p0 and ending
at the points on ∂U . These additional properties are a modified property (K1′) and (K2′) defined as follows:

(K1) K is continuous along all geodesics γ starting at p0 for all unit vectors on S(p0, 1)

(K2) K > 0 ∀p ∈ U\{∂U} and K ≥ 0 ∀p ∈ ∂U , and K = 0 ∀p ∈M\{U}

The weight function satisfying properties (K1) − (K3) takes into consideration and is adjusted according to the
different directions of the changes, i.e. prescribes different sensitivities to different underlying factors, just as to their
size, i.e. the relevance of the change in comparison to the other possible changes, based on the adequate knowledge of
the practitioner about the limitations and weaknesses of the model, market and business.

6The Riemannian volume plays the same role as the Lebesgue measure in Rn. The difference is that in the case of a Riemannian manifold, the
measure is now different at each point since the local expression of the metric is changing. Intuitively, the induced manifold measure represents the
notion of uniformity according to the chosen Riemannian metric.

7For example the uncertainty surrounding data, calibration or model selection.
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6. Weight Function Construction

The construction of a weight function on a given Riemannian manifold is technically very difficult since it requires
precise knowledge of the intrinsic geometry and the structure of the manifold. The challenge here is to gain the spatial
intuition of the geometrical properties of the abstract manifold in order to employ the particular properties of the weight
function for the different directions and sizes of the material perturbations.

To determine a weight function K that satisfies all of the required properties and in order to overcome this diffi-
culty we introduce a continuous mapping from a manifold endowed with an Euclidean geometry to the model manifold
endowed with a Riemannian geometry that preserves the local properties. Euclidean geometry is well understood and
intuitive, and thus a construction of a function on this space is considerably easier and more intuitive. In total, we con-
struct three mappings: the exponential map expp0 , the polar transform P and a further coordinate transform Λρ.

Every Riemannian manifoldM is locally diffeomorphic to the Euclidean space Rn, and so in a small neighbour-
hood of any point the geometry of M is approximately Euclidean. All inner product spaces of the same dimension
are isometric, therefore, all the tangent spaces TpM on a Riemannian manifoldM are isometric to the n–dimensional
Euclidean space Rn endowed with its canonical inner product. Hence, all Riemannian manifolds have the same in-
finitesimal structure not only as manifolds but also as Riemannian manifolds.

The weight function is defined with respect to the neighbourhood U and is continuous on the geodesic curves γ
connecting p0 to the points on the boundary ∂U . All material perturbations, i.e. alternative models inside U , are
uniquely described by the distances from the base model p0 and by the vectors tangent to the unique geodesics γ that
pass through them. To maintain these properties, we consider an n–dimensional cylinder Cn = [0, 1]×Sn−1 = {(t, ν) :
t ∈ [0, 1], ν ∈ Sn−1} ⊂ Rn+1, where the parameter t stands for the normalized distance of geodesics, and where Sn−1

denotes the (n−1)–dimensional unit sphere on Rn containing all the unit tangent vectors of Tp0M. Then the boundaries
of Cn, defined by

∂1C
n = {(0, ν) : ν ∈ Sn−1}, ∂2C

n = {(1, ν) : ν ∈ Sn−1},

represent the end points of the geodesics, i.e. ∂1C
n will be constructed to the point p0 and ∂2C

n will be transformed to
become ∂U .

The Riemannian structure on Cn is given by the restriction of the Euclidean metric in Rn+1 to Cn. Hence, Cn is a
compact smooth Riemannian manifold with a canonical measure given by the product measure dt× dν. This manifold
allows us to construct an appropriate function on Cn, and then using a proper transformation to obtain a weight function
satisfying all required properties (K1)− (K3). Besides, it gives us the freedom to choose a suitable function based on
the uncertainty surrounding data and other input information, the calibration, the model selection and the model intended
purpose.

As a first step to obtain a mapping from Cn to M, we consider the exponential map from the tangent space at
the point p0 onto the neighbourhood U (see Section 2 for definition). Since U is compact and, hence, topologically
complete, the geodesic γ can be defined on the whole real line R (Hopf and Rinow (1931)). Thus, the exponential map
is well–defined on the whole tangent space Tp0M. Further, since U is a subset of the normal neighbourhood of p0, the
exponential map defines a local diffeomorphism from Tp0U to U . Then the geodesics γ are given in these coordinates
by rays emanating from the origin.

Example

The weight function is constructed with respect to the neighbourhood U that in our example represents the geodesic
γ with boundary points p0 and p1. We parametrize γ by t ∈ [0, 1], and define the one-dimensional cylinder as, i.e.
C1 = [0, 1]× S with boundaries ∂1C = {(0, ν)} and ∂2C = {(1, ν)} where S = {ν ∈ Rn : ||ν||2 = ν2 = 1}. The left
boundary ∂1C

1 will be contracted to the given model p0 and ∂2C
1 to p1.

The construction of the weight function reduces to the construction of the weight function on the real line on the
interval [0, 1].

�

Next, we introduce a polar coordinate transformation on Tp0U . For the sake of distinction, we denote by S(p0, 1)
the (n− 1)–dimensional unit sphere in Tp0U , and by Sn−1 the unit sphere in Rn. We define the transformation and its
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inverse as

P : [0,∞)× S(p0, 1)→ Tp0M : P (t, v) = tv;

P−1 : Tp0M\{0} → (0,∞)× S(p0, 1) : P−1(v) =
(
||v||, v

||v||

)
In order to precisely describe the neighbourhood U , we define ρ(v) as the length d(p0, p) ≥ 0 of the geodesic γ

connecting the point p0 with a boundary point p ∈ ∂U in the direction v ∈ S(p0, 1). The distance ρ, considered as a
real valued function on S(p0, 1), is strictly positive and Lipschitz continuous on S(p0, 1). Using the distance function,
we define the coordinate transformation

Λρ : (t, v)→
(
ρ(v)t, v

)
.

The mapping Sn−1 7→ S(p0, 1), ν 7→ v is well defined in the sense that there exists a canonical identification between
a unit vector ν ∈ Sn−1 ⊂ Rn and the element v ∈ S(p0, 1) ⊂ Tp0U . Since the distance function v 7→ ρ(v) is strictly

positive and Lipschitz continuous on S(p0, 1), so is the inverse v 7→ 1

ρ(v)
. Therefore, the mapping Λρ defines a bi–

Lipschitz mapping from [0, 1]× Sn−1 onto the subset [0, ρ(v)]× S(p0, 1).

Then the composition expp0 PΛρ defines a mapping from Cn onto U that maps ∂1C
n onto the point {p0} and the

right hand side boundary onto ∂U . Moreover, it preserves continuity for any continuous function h defined on Cn that
satisfies the following consistency condition:

Definition 3. A continuous function h defined on a cylinder Cn of Rn is called consistent with a continuous function f
on U under the mapping expp0 PΛρ if h(t, ν) = Λ−1

ρ f−1(t, ν) for all (t, ν) ∈ Cn. In this case, h satisfies the following
conditions:

(i) h(0, ν1) = h(0, ν2) ∀ν1, ν2 ∈ Sn−1

(ii) h(1, ν1) = h(1, ν2) if expp0 PΛρ(1, ν1) = expp0 PΛρ(1, ν2) on M

The first condition (i) implies that h is constant on the boundary ∂1C
n. Then when the function h on Cn is consistent

with f , the constant value at ∂1C
n corresponds exactly with the value f(p0). The second condition ensures compatibility

of function h with function f at the points of the boundary ∂U , i.e. if expp PΛρ maps two different points (1, ν1) and
(1, ν2) in Cn onto the same point p ∈ ∂U , then h(1, ν1) = h(1, ν2) = f(p).

Lemma 1. The weight function K satisfying assumptions (K1) − (K3) is equivalent to assuming that a consistent
function h(t, ν) defined on Cn with codomain Rn satisfies the following properties:

(H1) h(t, ν) is a continuous function on the compact manifold Cn

(H2) h(t, ν) ≥ 0, (t, ν) ∈ [0, 1)× Sn−1

(H3) h(1, ν) = κ(ν) for all ν ∈ Sn−1, where κ is some non–negative function of ν

(H4) h(0, ν1) = h(0, ν2) = const. for all ν1, ν2 ∈ Sn−1

(H5)
∫
Cn

h(t, ν)dν = 1, where dν = dt× dµ

Proof. See Appendix. Using this result, the construction of the weight function becomes easier and more intuitive. One
chooses the appropriate function h defined on Cn with respect to the particular model and the uncertainty surrounding
it. Then, applying the above transformation one obtains an appropriate weight function K defined on U satisfying
properties (K1) − (K3) relevant for model risk analysis. Besides, for a chosen function h the weight function K is
unique and well defined.

Theorem 4. A continuous function h defined on Cn satisfying conditions (H1)− (H5), determines a unique and well
defined weight function K on U given by

K(p, t) =
1

ηp0(p)
t1−nρ(v)−nh

(
t

ρ(v)
, v

)
(5)

where ηp0(p) is the volume density with respect to p0, t ∈ [0, ρ(v)] is a scaling parameter, and ρ(v) is the distance
function defined above.

Proof. See Appendix.
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Example
In line with our example, we construct a suitable weight function adjusted to the uncertainty surrounding the VaR

model. We have seen in the previous section that the underlying process suggests small deviations from the normal
distribution and indicate a negative skew. Thus, to determine the weight function we construct a continuous function
h that has the maximum value at the point representing our given model p0, and is monotonically–decreasing with the
distance from p0. This choice means that we are interested more on how sensitive is the model to small variations around
p0. We define h on [0, 1]× S as follows

h(τ, v) = c
(

1− t
)
, ∀ν ∈ S, t ∈ [0, 1]

where the normalizing constant c ensures the assumptions (H5) and equals8 to Γ

(
n

2

)
π−n/2. By applying the continu-

ous mapping expp0 PΛρ we obtain the weight function K along the geodesics γ:

K(p, t) =
1

ηp0(p)
d(p0, p1)−1Γ

(
1

2

)
π−1/2

(
1− t

d(p0, p1))

)
= 1.4686

(
1− 1.47t

)
�

7. Measure of Model Risk

In this section we shall introduce a mathematical definition of the quantification of model risk, relate to the concepts
introduced so far and study some actual applications.

Recall that we have so far focused on a weighted Riemannian manifold (M, I, ζ) with I the Fisher–Rao metric and
ζ as in eq. 4. The model in previous sections was assumed to be some distribution p ∈ M. More likely, a practitioner
would define the model as some mapping f :M→ R with p 7→ f(p), i.e. a model outputs some quantity.9

We shall formally introduce the normed space (F , ‖·‖) such that f ∈ F . Though not strictly necessary at this infor-
mal stage we shall assume completeness so (F , ‖·‖) is a Banach space.

Definition 5. With notation as above, let (F , ‖·‖) be a Banach space of measurable functions with respect to ζ. The
model risk Z of f ∈ F and p0 is given by

Z(f, p0) =

∥∥∥∥ f

f(p0)

∥∥∥∥ . (6)

In general, f will have units (e.g. monetary for economic capital calculation) so the functional form of eq. 6 allows
us to obtain a dimensionless number which is in general a desirable property. It is always possible to add the appropriate
units afterwards if so desired. The deviance of the result of eq. 6 from 1.0 can be interpreted as a percentage over the
value associated to p0, e.g. 1.185 would be an expected increase of 18.5% over f(p0).10 Another easy to interpret
possibility, but with units, is ‖f − f(p0)‖.

The quantification of model risk itself can be thought of as a model with a purpose such as provisions calculation or
comparison of modelling approaches. Possibilities are endless so we might have started with some T : F → F and set
Z(f, p0) = ‖T ◦ f‖; however, we think eq. 6 is general enough for our present purposes.

8 The volume of the (n− 1)–dimensional ball S(0, 1) is 2π1/2\Γ
(

1

2

)
. Thus we have

1 = c

∫
[0,1]×Sn−1

(
1− t

)
dt× dµ ⇒ c = Γ

(n
2

)
π−π/2

9This is not always the case but we can proceed along these lines depending on the usage to be given to the quantification itself. For example, an
inter(extra)polation methodology on a volatility surface is a model whose output is another volatility surface, not a number. If we want to quantify the
model risk of that particular approach for Bermudans we might consider its impact on their pricing.

10Almost equivalent to eq. 6 would be
∥∥∥ f−f(p0)f(p0)

∥∥∥.
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In what follows we address four examples of Def. 5. Their suitability very much depends among other factors on
the purpose of the quantification, as we shall see below.

1. Z1(f, p0)

Z1(f, p0) =

∥∥∥∥ f

f(p0)

∥∥∥∥
1

=

∫
M

∣∣∣ f

f(p0)

∣∣∣dζ
This measure represents the total relative change in the outputs across all relevant models.

2. Z2(f, p0)

Z2(f, p0) =

∥∥∥∥ f

f(p0)

∥∥∥∥
2

=
(∫
M

( f

f(p0)

)2

dζ
)1/2

With this measure we put more importance on a big changes in the outputs (big gets bigger and small smaller).
So it might be better suited when this emphasis is appropriate, or when it is relevant to keep certain consistency
with the norm used in the calibration process (e.g., with maximum likelihood or least square methodologies).

3. Z∞(f, p0)

Z∞(f, p0) =

∥∥∥∥ f

f(p0)

∥∥∥∥
∞

= ess sup
M

∣∣∣ f

f(p0)

∣∣∣
Calculating Z∞ one finds the relative worst–case error in the examined model that would be incurred through
a deviation from the preferred model, given a precise constraint on the plausibility of the deviation. Further,
it can point to the sources of model sensitivity that lead to the largest errors in measuring the risk: using the
inverse exponential map, exp−1

p0 , we can detect the corresponding direction and size of the change in underlying
assumptions that leads to the largest variation in the output and so, ascertain the biggest weakness or limitation of
the model.

4. Zs,p(f, p0)

Zs,p(f, p0) =

∥∥∥∥ f

f(p0)

∥∥∥∥
s,p

=

( ∑
|k|≤s

∫
M

∣∣∣∂k( f

f(p0)

)∣∣∣pdζ)1/p

A Sobolev-like norm takes into account the derivatives of f and it can be of interest in those cases when not only
f is relevant but its rate of change. An example can be a derivatives model used not only for pricing but also for
hedging.

The interpretation of the measures of model risk depends on the way and where the models are subsequently used.
For example, in case of the VaR model, the output is further used for decision making in calculating capital requirements,
or for setting limits. Capital models dealing with extreme percentiles are vulnerable to statistical error, and so the model
risk in capital management may involve the consequences of poor decisions relying on those models.

Example
For illustration in our example we provide the total measure of model risk Z1(V aR, p0), and the worst case model

risk Z∞(V aR, p0) that equal

Z1(V aR, p0) = 0.5448 and Z∞(V aR, p0) = 5.2348

Z1(V aR, p0) means that there is expected total increase of 54.48% over V aR(p0). The supremum norm indicates that
the biggest expected difference in V aR is 523% over the output from the given model p0. These results are not surpris-
ing since V aR heavily depends on the underlying distribution. However, as sated above more concrete interpretation of
these measures depend on the specific use of the model risk quantification. �

Sound methodology for model risk quantification should at least consider the data used for building the model, the
model foundation, the IT infrastructure, overall performance, model sensitivity, scenario analysis and most importantly
usage. Within our framework we address and measure the uncertainty associated with the aforementioned areas and the
information contained in the models. The choice of the embedding and proper neighbourhood of the given model take
into account the knowledge and the uncertainty of the underlying assumptions, the data and the model foundation. The
weight function that assigns relative relevance to the different models inside the neighbourhood considers the model
sensitivity, scenario analysis, the importance of the outcomes with connection to decision making, the business, the
intended purpose, and it addresses the uncertainty surrounding the model foundation. Besides, every particular choice
of the norm provides a different information and picture of the model with respect to model risk it induces. Last and
most important, the model risk measure considers the usage of the model represented by the mapping f 11.

11Or equivalently by any possible transformation T : F → F .
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In order to explore the further financial implications of model risk, it is necessary to know the explicit link between
models and decisions. The potential impact of model risk will depend on the very specific features of the business use
that the model is put into, for example pricing, financial planning, hedging, or capital management. The plausible size
and direction of such financial impact provides us with a measure of the materiality of model risk, in the context of a
specific application.

8. Conclusions and Further Research

In this paper we introduce a general framework for the quantification of model risk using differential geometry and
information theory. We also present a sound mathematical definition of model risk using Banach spaces over weighted
Riemannian manifolds, applicable to most modelling techniques using statistics as a starting point.

Our proposed mathematical definition is to some extent comprehensive in two complementing ways: First, it is
capable of coping with relevant aspects of model risk management such as model usage, performance, mathematical
foundations, model calibration or data. Second, it has the potential to asses many of the mathematical approaches cur-
rently used in any financial institution: Credit risk, market risk, derivatives pricing and hedging, operational risk or XVA
(valuation adjustments).

It is worth noticing that the approaches in the literature, to our very best knowledge, are specific in these same two
ways: They consider very particular mathematical techniques and are usually very focused on selected aspects of model
risk management.

There are many directions for further research, all of which we find to be both of theoretical and of practical interest.
We shall finish naming a few of them.

Banach spaces are very well known and have been deeply studied in the realms of for example functional analysis.
On the other hand, weighted Riemannian manifolds are non–trivial extensions of Riemannian manifolds, one of the
building blocks of differential geometry. The study of Banach spaces over weighted Riemannian manifolds shall broaden
our understanding of the properties of these spaces as well as their application to the quantification of model risk.

As introduced in the present contribution, our framework can include data uncertainties by studying perturbations
and metrics defined on the sample, which are then transmitted to the weighted Riemannian manifold through the cali-
bration process.

The general methodology can be tailored and made more efficient for specific risks and methodologies. For ex-
ample, one may interpret the local volatility model for derivatives pricing as an implicit definition of certain family of
distributions, extending the Black–Scholes stochastic differential equation (which would define the lognormal family).

Related to the previous paragraph, and despite the fact that there is literature on the topic, the calculation of the
Fisher–Rao metric itself deserves further numerical research in order to derive more efficient algorithms.

9. Appendix

Lemma 2. The weight function K satisfying assumptions (K1) − (K3) is equivalent to assuming that a consistent
function h(t, ν) defined on the Cn with codomain Rn satisfies the following properties:

(H1) h(t, ν) is a continuous function on the compact manifold Cn

(H2) h(t, ν) ≥ 0, (t, ν) ∈ [0, 1)× Sn−1

(H3) h(1, ν) = κ(ν) for all ν ∈ Sn−1, with κ(ν) ≥ 0

(H4) h(0, ν1) = h(0, ν2) = const. for all ν1, ν2 ∈ Sn−1

(H5)
∫
Cn

h(t, ν)dν = 1, where dν = dt× dµ

Proof. To prove the equivalence we need to show that the function h defined in Lemma 2 preserves the required
properties of K under the continuous mapping expp0 PΛρ. First we show that the composition that consists of three
different mappings is well defined.
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As a first step, we define an n–dimensional cylinder

Cn := [0, 1]× Sn−1 = {(t, ν) : t ∈ [0, 1], ν ∈ Sn−1} ⊂ Rn+1

where Sn−1 := {ν ∈ Rn : ||ν||2 = ν2
1 + · · · + ν2

n = 1} denotes the (n − 1)−dimensional unit sphere in Rn. The
cylinder Cn is a differentiable submanifold of Rn+1 with boundaries

∂1C
n := {(0, ν) : ν ∈ Sn−1}, ∂2C

n := {(1, ν) : ν ∈ Sn−1}

A Riemannian structure on Cn is given by the restriction of the Euclidean metric in Rn+1 to Cn. Thus, Cn is a compact
Riemannian manifold. A canonical measure on Cn is given by the product measure dt × dµ(ν), where µ denotes the
standard surface measure on Sn−1.

We define ρ(v) as the length d(p0, p) ≥ 0 of the geodesic γ connecting the point p0 with a boundary point p ∈ ∂U
in the direction v ∈ S(p0, 1), where S(p0, 1) denotes the (n− 1)−dimensional unit sphere in the tangent space Tp0M.

Note that since U is the subset of the normal neighbourhood with respect to p0, the exponential map is isometric.
From now on we will assume that U is a compact star–shaped subset of a Riemannian manifold M and the distance
function ρ is Lipschitz continuous on S(p0, 1) ⊂ Tp0M. Lipschitz continuity of ρ(v) is equivalent to the assumption of
continuity and piecewise regularity of ∂U .

Now we define an n−dimensional subset of Cn by

Cnρ := {(t, v) : t ∈ [0, ρ(v)], v ∈ Sn−1} ⊂ [0, 1]× Sn−1

with boundary

∂1C
n
ρ := {(0, v) : v ∈ Sn−1}, ∂2C

n
ρ := {(ρ(v), v) : v ∈ Sn−1}

The new set Cnρ is a compact subset of Cn. In order to map Cn onto Cnρ we define the following coordinate transform:

Λρ : Cn → Cnρ , (t, v)→
(
ρ(v)t, v

)
.

Since the distance function v 7→ ρ(v) is strictly positive and Lipschitz continuous on S(p0, 1), so it is the inverse func-

tion v 7→ 1

ρ(v)
. Therefore, the mapping Λρ defines a bi–Lipschitz mapping fromCn ontoCnρ . The Jacobian determinant

of Λρ equals ρ almost everywhere on Cn.

Next, we are going to introduce polar coordinates on the tangent space Tp0M. We define the transformation P as

P : [0,∞)× S(p0, 1)→ Tp0M : P (t, v) = tv

and its inverse by

P−1 : Tp0M\{0} → (0,∞)× S(p0, 1) : P−1(v) =
(
||v||, v

||v||

)
P is well defined by continuity in Tp0M, and maps Cnρ onto U ⊂ Tp0M. Moreover, the transformation P defines a
diffeomorphism from Cnρ \{∂1Cρ, ∂2Cρ} onto the open set U\{0, ∂U}. Combining P with the exponential map expp0 ,
we have

expp0 P (Cnρ ) = U

The composition expp0 ◦P defines a diffeomorphism from Cnρ \{∂1C
n
ρ , ∂2C

n
ρ } onto U\{p0, ∂U}. Furthermore, the

boundary ∂1C
n
ρ is mapped onto {p0} and the boundary ∂2C

n
ρ onto the boundary ∂U 12. Then the points (t, v) ∈ Cnρ

induce geodesic polar coordinates on Rn.

12When p0 ∈ ∂U , the boundary ∂2Cnρ is mapped onto ∂U\{p0}
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We have introduced three mappings

Cn
Λρ−−→ Cnρ

P−→ U
expp0−−−→ U ⊂M

The composition expp0 PΛρ is a continuous mapping from Cn onto U . Moreover, expp0 PΛρ maps the boundary ∂1C
n

of the cylinder Cn onto the point p0 and the boundary ∂2C
n onto ∂U .

Now we prove that a consistent function satisfying properties (H1)− (H5) uniquely determines the weight function
satisfying (K1)− (K3):

• It is straightforward to see, that properties (K1)−(K2) are satisfied by construction. The composition expp0 PΛρ
preserves connectedness and compactness and it a continuous mapping from Cn ontoM. Moreover, expp0 PΛρ
maps the left hand boundary ∂1C

n onto the point p0 and the right hand boundary ∂2C
n onto the boundary of

U . Hence, the image f(expp0(ρ(v)tv)) of a continuous function f onM is also continuous on the cylinder Cn,
and every function g defined on Cn satisfying consistency properties (i) − (ii) of Definition 3 is the image of a
continuous function onM under the pull–back operator Λ−1

ρ P−1 exp−1
p0 .

The composition expp0 PΛρ applied to a function h that is continuous on Cn and satisfies the consistency con-
ditions (i) − (ii) of Definition 3 will give us a continuous function K onM that by construction is continuous
along the geodesics starting at p0 and ending at the points of the boundary. That means, property (K1) is satis-
fied. The same argument applies to any non–negative function h on Cn. Thus, properties (H1) − (H2) ensures
(K1)− (K2) under the composition expp0 PΛρ(v).

• Further, it remains to prove that the weight function K is indeed a probability density onM with respect to the
measure dv(p), i.e. to show that

∫
M
dζ = 1.∫

M
dζ =

∫
M
K(p, t)dv(p) =

∫
M
K(expp0(v), t)η(v)dξ

where dξ is the standard Lebesgue measure on the Euclidean space Tp0M and ηp0(v) = det((d expp0)v) is the
Jacobian determinant of the exponential map. Note that η(v) represents the density function that is a positive and
continuously differentiable function on U ⊂ Tp0M and the zeros of η lie at the boundary ofM. Further, we have∫

M
K(expp0(v), t)η(v)dξ =

∫
S(p0,1)

∫ ρ(v)

0

tn−1K(expp0(tv), t)ηp0(tv)dtdµ(v)

where tn−1 is the Jacobian determinant of the polar coordinate transformation and dµ(v) is the standard Rieman-
nian measure on the unit sphere S(p0, 1). The last step is the mapping from Cρ to Cn:∫
S(p0,1)

∫ ρ(v)

0

tn−1K(expp0(tv))ηp0(tv)dtdµ(v) =

∫
Sn−1

∫ 1

0

1

ρ(v)
K
(

expp0(ρ(v)tv)
)(
ρ(v)t

)n−1
ηp0(ρ(v)tv)dtdµ(v)

where the Jacobian determinant is
1

ρ(v)
. Then using the expression for K we have that the expression above is

equal to:

=

∫
Sn−1

∫ 1

0

1

ρ(v)

1

ηp0(ρ(v)tv)
t1−nρ(v)−nh

(
t

ρ(v)
, v

)(
ρ(v)t

)n−1
ηp0(ρ(v)tv)dtdµ(v)

=

∫
Sn−1

∫ 1

0

h

(
t

ρ(v)
, v

)
dtdµ(v) = 1

�

Theorem 6. A continuous function h defined on the cylinderCn satisfying conditions (H1)−(H4) determines a unique
and well defined weight function K onM given by

K(p, t) =
1

ηp0(p)
t1−nρ(v)−nh

(
t

ρ(v)
, v

)
(7)

where ηp0(p) is the volume density with respect to p0, t ∈ [0, ρ(v)] is a scaling parameter, and ρ(v) is the distance
function defined in the Proof of Lemma 2.
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Proof. Note that the composition expp0 PΛρ induces a change of variables for integrable function f that yields to the
following formula: ∫

M
f(p)dζ =

∫
U

f(p)dζ =

∫
U
f(expp0(v))ηp0(v)dv

=

∫
Sp0

∫ ρ(v)

0

f(expp0(tv))t1−nηp0(t, v)dtdv

=

∫
Sp0

∫ 1

0

f(expp0(ρ(ν)ν))
1

ρ(ν)
ηp0(tρ(ν), ν)dtdν

The volume density ηp0 is a well-defined, non-negative function with zeros at the cut locus of the point p0. Be-
sides, ηp0 is continuous and differentiable function on M13. The distance function ρ is a well defined, strictly pos-
itive and Lipschitz continuous function on S(p0, 1), and thus is the inverse 1/ρ(v). Therefore, the mapping Λρ de-
fines a bi-Lipschitzian mapping from Cn to Cnρ . Moreover, the composition expp0 P defines a diffeomorphism from
Cnρ {∂1C

n
ρ , ∂2C

n
ρ }. The using the fact that the point set {p0} and the boundary of U are subsets of tν−measure zero,

we can conclude that the mapping expp0 PΛρ is isomorphism. Then for any h defined on Cn satisfying conditions
(i) − (ii) of Definition 3, the associated weight function K is well defined on U . The uniqueness of K follows after
specifying a function h that satisfies properties (H1)− (H5). �

13Note that whenM is Rn with the canonical metric, then ηp0 (p) = 1 for all p ∈ Rn.
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