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Abstract

Worldwide regulation obliges financial institutions to manage model risk with the same severity
as any other risk. Its quantification is essential not only in meeting these requirements but also
for institution’s basic internal operative. In this article we address the quantification of model
risk by the calculation of the norm of an appropriate function defined on a Riemannian manifold
endowed with Fisher–Rao metric. The aim is twofold: introduce a sufficiently general and sound
mathematical framework to cover the main points in model risk and illustrate how a practitioner
may identify the relevant abstract concepts and put them to work.

1 Introduction

Models are simplifying mappings of reality to serve a specific purpose aimed at applying mathematical,
financial and economic theories to the available data. They deliberately focus on specific aspects
of the reality and degrade or ignore the rest. Understanding the capabilities and limitations of the
underlying assumptions is key when dealing with a model and its outputs. According to US [10],
model risk is defined as

”[. . . ] the potential for adverse consequences from decisions based on incorrect or misused model out-
puts and reports. Model risk can lead to financial loss, poor business and strategic decision making, or
damage to bank’s reputation”

Thus, US Federal Reserve identifies the two main reasons for model risk (inappropriate usage and
fundamental errors). Furthermore, they state that model risk should be managed and addressed with
the same severity as any other type of risk and that banks should identify the sources of model risk
and assess their magnitude. The US Federal Reserve also emphasizes that expert modelling, robust
model validation and a properly justified approach are necessary elements in model risk moderation,
though they are not sufficient and should not be used as an excuse for not improving models.
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In spite of the rise of awareness of model risk and understanding its significant impact, there are no
globally defined industry nor market standards on its exact definition, management and quantification,
even though as aforementioned a proper model risk management is required by regulators.

Within the finance literature, some authors have defined model risk as the uncertainty about the
risk factor distribution as in [12], the misspecified underlying model in [9], the deviation of a model
from a ’true’ dynamic process in [5], the discrepancy relative to a benchmark model in [13], and the
inaccuracy in risk forecasting that arises from the estimation error and the use of an incorrect model
in [4]. Model risk has been previously classified in all asset classes, see [18] for interest rate products
and credit products, [8] for portfolio applications, [23] for asset backed securities, and [4] for relation
to measuring market risk.

The quantification, as an essential part of model risk management, is required for a consistent
management and effective communication of model weaknesses and limitations to decision makers
and users and to assess model risk in the context of the overall position of the organization. The
quantification of model risk should consider the uncertainty stemming from the selection of the
mathematical techniques (e.g. focusing on fitting a normal distribution hence leaving aside other
distribution families), the calibration methodology (e.g. different optimization algorithms may derive
different parameter values), and from the limitations on the sample data (e.g. sparse or incomplete
database).

Model risk quantification poses many challenges that come from the high diversity of models, the wide
range of techniques, the different use of models, among others. Some model outputs drive decisions;
other model outputs provide one source of management information, some outputs are further used
as an inputs in other models. Additionally, the model outputs may be completely overridden by
expert judgment, not to mention that in order to quantify model risk you need another model, which
is again prone to model risk.

It is common practice to consider the most relevant areas of analysis for the quantification of model
risk to be data and calibration, model foundations, model performance, IT infrastructure, model use,
controls and governance, and model sensitivity. The model may be fundamentally wrong due to errors
in its theoretical foundation or conceptual design that emerge from incorrect assumptions, model
misspecification or omission of variables. Data quality issues, inadequate sample sizes and outdated
data contribute to model performance issues such as instability, inaccuracy or bias in model forecasts.
Model risk also arises from inadequate controls over the model use. Flawed test procedures or failure
to perform consistent and comprehensive user acceptance tests can lead to material model risk. To
name just a few.

The focus of this paper is on developing a new approach for quantifying model risk within the
framework of differential geometry, see [20], and information theory, see [1]. In this work we introduce
a measure of model risk on a statistical manifold where models are represented by a probability
distribution function. Differences between models are determined by the geodesic distance under the
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Fisher–Rao metric. This metric allows us to utilize the intrinsic structure of the manifold of densities
and to respect the geometry of the space we are working on, i.e. it accounts for the non–linearities of
the underlying space.

The rest of this paper is structured as follows. In section 2 we summarize the central concepts from
Riemannian geometry and introduce the terminology used throughout the paper. Modeling process
steps and a general description of our proposed method for quantification of model risk are presented
in Section 3, which is followed by a detailed discussion on the main quantification steps. Section 4 and
Section 5 describe the construction of the neighbourhood containing material variations of the model,
and the definition of the weight function, respectively. The model risk measure is then defined and
explained in Section 6. Section 7 is dedicated to an empirical example of the model risk calculation of a
credit risk model. Section 8 provides some final conclusions and directions for future work, and finally,
the Appendix contains the construction of the weight function and the proofs of the main results.

2 Background on Riemannian Geometry

In this section we introduce some required concepts from differential geometry and information
theory, and fix the notation and terminology used throughout the article. For more details we refer
the reader to e.g. [1] or [20].

Let M be a statistical manifold consisting of probability density functions p(x|θ) of random variable
x ∈ X with respect to a measure µ on X , such that every distribution is uniquely parameterized by
an n–dimensional vector θ = (θi) = (θ1, . . . , θn). 1 Specifically, let

M = {p(x|θ) | θ ∈ Θ ⊂ Rn},

with a one–to–one mapping between θ and p(x|θ). Additionally, under the assumptions that the
parametrization of M is differentiable and C∞ diffeomorphism, the parametrization θ forms a
coordinate system of M, [1]. The local coordinate system θ = (θ1, · · · , θn) then induces a basis
∂

∂θ
= (∂1, · · · , ∂n) of the tangent spaces (∂i is a shorter notation for ∂/∂θi).

The structure of M is specified by a Riemannian metric, g = (gij), that is defined by a local product
on tangent vectors at each point p ∈M denoted by g : TpM×TpM→ R, that is symmetric, bi-linear,
positive definite and C∞ differentiable in p. By the bi–linearity of the inner product of g, for any two
tangent vectors u, v ∈ TpM

g(u, v) =

n∑
i=1

n∑
j=1

viujg(∂i, ∂j)

1We describe only the case for continuum on the set X , however if X were discrete, the given framework will still
apply by switching

∫
(·) with

∑
(·).
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where {∂i}ni=1 form the basis elements of TpM. For a statistical manifold, the Fisher–Rao information
metric is given by

Iij(p) = gij(p) = E
[∂ log(p)

∂θi
∂ log(p)

∂θj

]
=

∫
p
∂ log(p)

∂θi
∂ log(p)

∂θj
dθ. (1)

where I(p) = I
(
p(x|θ)

)
can be considered as a Riemannian metric. Note that det (I(p(x|θ))) represents

the amount of information a sample point conveys with respect to the problem of estimating the
parameter θ, and so I(·) can be used to determine the dissimilarities between distributions. It
measures the ability of the random variable x to discriminate the values of the parameter θ′ from θ
for θ′ close to θ.

Example (statistical manifold of normal distributions): The normal distribution with mean µ
and variance σ2 is given by

N (x|µ, σ2) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
, x ∈ R, µ ∈ R, σ > 0.

Set Θ = {(θ1, θ2) ∈ R2|θ2 > 0},X = R and p(x|θ) = N (x|
√

2θ1, (θ2)2). Then the statistical manifold
with respect to {p(·|θ)|θ ∈ Θ} has a Riemannian metric g = 2(θ2)−2

∑
dθidθi of constant curvature

−1/2.

The Riemannian metric encodes how to measure distances, angles, areas and curvature on the manifold
by specifying the scalar product between tangent vectors at a particular point. If we consider a curve
γ : [a, b] ⊂ R→M on the manifold, its length `(γ) can be defined as

`(γ) =

∫ b

a

∥∥∥∥dγdt
∥∥∥∥ dt =

∫ b

a

√
gij γ̇iγ̇jdt =

√
〈γ̇, γ̇〉.

where γ̇i is the derivative of γ̇i =
∂γ

∂θi
. Then, the distance between two points p, q ∈ M is defined by

the infimum of the length of all smooth curves between these two points and is give by

d(p, q) =

∫
γ∈Γ

`(γ)

where Γ is a set of all smooth curves between these two points. The locally length–minimizing smooth
curve γ(t) : [0, 1] →M is called geodesic and is characterized by the fact that it is autoparallel, e.g.
the field of tangent vectors γ̇(t) stays parallel along γ (velocity is constant along the geodesic ∇γ̇ γ̇ = 0
on γ). In local coordinates, a curves is a geodesic iff it is the solution of the system of n second order
Euler–Lagrange equations:

d2θk

dt2
+

n∑
i,j=1

Γkij
∂θi

dt

∂θj

dt
= 0 ∀k = 1, . . . , n,

where Γkij are the Christoffel symbols of the second kind.
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From the result of existence and uniqueness of solutions of differential equations, for each p ∈ M
and for each tangent vector v ∈ TpM, there exists an open interval Iv with 0 ∈ Iv and a unique
geodesic γv : Iv → M, such that γv(0) = p and γ̇v(0) = v. Therefore, the exponential mapping
expp : TpM → M is defined by expp(v) = γv(1) = γv1(‖v‖), with v1 = v/ ‖v‖. For each p ∈ M,
there exists a neighborhood V of the origin in TpM, such that expp is a diffeomorphism from V onto
a neighborhood V of p. The neighborhood V is star–shaped, i.e. for any point belonging to V, the
line joining the point to the origin is contained in V. The image of a star–shaped neighborhood of
the origin under the exponential map is a neighborhood of p on the manifold (also called normal
neighborhood).

A notion of connection ∇ defines a map between any neighboring tangent spaces. The canonical affine
connection on a Riemannian manifold is the Levi–Civita connection and it is directly defined from
the covariant derivative, i.e. orthogonal projection of the usual derivative on the vector fields onto
tangent space. It parallel transports a tangent vector along a curve while preserving its inner product
(it is compatible with the metric, i.e. the covariant derivative of the metric is zero). The Levi–Civita
coefficients are defined, in each local chart by the Christoffel symbols of the second kind Γkij given by

∇kij = Γkij =
1

2
gkl

(
∂gjl
∂θi

+
∂gil
∂θj
− ∂gij
∂θl

)

∀i, j, k, l = 1, . . . , n is used the Einstein summation convention, gkl is the metric inverse. When the
connection coefficients of ∇ with respect to a coordinate system of M are all identically 0, then ∇ is
said to be flat, or alternatively, M is flat with respect to ∇.

3 Modeling Process Steps and Quantification of Model Risk

There are different types and aspects of model risk that tend to easily overlap, co–occur or co–vary.
In this context, we propose four rough model creation steps: Data, Calibration, Model Selection and
Testing, and Implementation and Usage. These steps may occur in an iterative fashion, although they
result in a general linear flow that ends with institutional use (implementation and maintenance) to
direct decision making (often encoded into an IT system). Limitations in any of these areas can impair
reliance on model results.

1. Data refers to the definition of the purpose for modeling, the specification of the modeling scope,
human and financial resources, the specification of data and other prior knowledge, their interpre-
tation and preparation. The data may be obtained from both internal and external sources, and
they are further prepared by cleaning and reshaping. Model risk may arise from data deficien-
cies in terms of both quality and availability, including, among others, error in data definition,
insufficient sample, inaccurate proxies, sensitivity to expert judgments, or misinterpretation.

2. Calibration includes the selection of the types of variables and the nature of their treatment,
the tuning of free parameters and links between system components and processes. Estimation
uncertainty may occur due to simplifications, approximations, flawed assumptions, inappropriate
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calibration, errors in statistical estimation or in market benchmarks, computational or algorith-
mic limitations, or use of unobservable parameters.

3. Model Selection and Testing involves the choice of the estimation performance criteria and
techniques, the identification of model structure and parameters, which is generally an iterative
process with the underlying aim to balance sensitivity to system variables against complexity of
representation. Furthermore, it is related to the conditional verification which includes checking
the sensitivity to changes in the data and to possible deviations from the initial assumptions. In
this step, model risk stems from, e.g., inadequate and incorrect modeling assumptions, outdated
model due to parameter decalibration, model instability or model misspecification.

4. Implementation and Usage refers to the deployment of the model into production which is
followed by a regular maintenance and monitoring. Sources of model risk in this step include
using the model for unintended purposes, lack of recalibration, IT failures, lack of communication
between modelers and users, lack of understanding on model limitations.

Quantification of model risk, from a best practice perspective, should be quick and reliable, without
refitting or building models, without reference to particular structure and methodologies, and with
prioritizing analysis (getting immediate assurance on shifts that are immaterial).

In this article we aim to show that differential geometry and information theory offer a base for
such an approach. For this purpose, in our setting a model is represented by a particular proba-
bility distribution, p : X → R+, that belongs to a manifold of probability measures M, so called
statistical manifold, available for modelling. The manifold M can be further equipped with the
information–theoretic geometric structure that allows us to quantify variations and dissimilarities
between probability distribution functions (models), among other things.

The set of probability measures may be further parameterized in a canonical way by a parameter
space Θ,M = {p(x; θ) | θ ∈ Θ}. This set forms a smooth Riemannian manifoldM. Every distribution
is a point in this space, and the collection of points created by varying the parameters of the
model, p ∈ M, gives rise to a hypersurface (a parametric family of distributions) in which similar
distributions are mapped to nearby points. The natural Riemannian metric is shown to be the
Fisher–Rao metric (see [21]), which is the unique intrinsic metric on the statistical manifold. It is the
only metric that is invariant under re–parametrization, see [1] for example.

Let us consider a given model p0 which can be uniquely parametrized using the vector θ0 = (θ1
0, . . . , θ

n
0 )

over the sample space X and which can be described by the probability distribution p0 = p(x; θ0).
This probability distribution belongs to a set (family) of distributions M = {p(x; θ) | θ ∈ Θ ⊂ Rn}
that forms a model manifold. We assume that for each x ∈ X the function θ 7→ p(x; θ) is C∞. Thus,
M forms a differentiable manifold and we can identify models in the family with points on this
manifold. Thus, choosing a particular model is equivalent to fixing a parameter vector θ ∈ Θ.

We define the model risk for a given model p0 at the scale of an open neighbourhood around p0 that
contains alternative models that are not too far in a sense quantified by the relevance to (missing)

6



properties and limitations of the model. The model risk is then measured with respect to all models
inside this neighbourhood as a norm of an appropriate function of the output differences over a
weighted Riemannian manifold endowed with the Fisher–Rao metric and the Levi–Civita connection.2

The analysis consists of five steps:

1. Embedding the model manifold into one that considers missing properties3 in the given model
p0.

2. Choosing a proper neighbourhood around the given model.

3. Choosing an appropriate weight function, that assigns relative relevance to the different models
inside the neighbourhood.

4. Calculating the measure of model risk with respect to all models inside the neighbourhood,
through the corresponding norm.

5. Interpretation of the measure with respect to the specific use of the model risk quantification.

Each step addresses and aligns different limitations of the model and the uncertainty in various areas
related to the model.4 In the following sections we further develop these steps and describe the intuition
behind.

4 Neighbourhood Around the Model

Recall that the given model p0 belongs to a n–dimensional manifold M, where each dimension
represents different aspects of information inherited in p0. In order to incorporte missing properties,
the uncertainty surrounding the data and the calibration, the additional information about the
limitations of the model, or wrong underlying assumptions, we may need to add new dimensions to
M, and thus consider a higher–dimensional space into which M is embedded. 5

We define a neighbourhood 6 around p0 with the help of the tangent space Tp0M. Note that Tp0M is
a vector space that describes at first order approximation, infinitesimal displacements or deformations
on the manifold at the point p0. From a practical point of view, not all perturbations are relevant,
thus taking into account the materiality with respect to the intended purpose of the model, its usage,

2The Levi–Civita connection parallely transports tangent vectors defined at one point to another and is compatible
with the geometry induced by the Riemannian metric ([1]). Additionally, for this choice of connection, the shortest paths
are geodesics.

3Or properties not appropriately modelled, for which there is no consensus, cannot be adequately calibrated, among
many others.

4Such as data, calibration, model selection, model performance, model sensitivity and scenario analysis, and most
importantly the usage of the model.

5Consider for example a case when the underlying model space represents the family of normal distributions, i.e. 2–
dimensional manifoldM0, we may want to consider the family of skew normal distributions, i.e. 3–dimensional manifold
M, for which M0 ⊂M, in order to also examine skewness.

6Note that throughout the paper we do not refer to the neighbourhood as to a strictly topological neighborhood.
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business and market, we consider only a small subset of the tangent bundle.

Let U be the open set around p0 of normal neighbourhood V such that

U = {tv ∈ V ⊂ Tp0M | 0 < t ≤ α(v), v ∈ S(p0, 1) and normal coordinates are defined},

where S(p0, 1) = {v ∈ Tp0M, ‖v‖ = 1} is the unit sphere on Tp0M.

The set U includes the directions of all relevant perturbations of the model p0 up to a certain level
α(v)in direction v. The level α(v) depends on the tangent vectors, since the degree of our uncertainty
on p0 might not be constant across the canonical parameter space; for instance we could assume
more uncertainty in the tails of the distribution p0 than in its body, or higher sensitivity to one of
the parameters than to others. The level α(v) can be interpreted as a means to control uncertainty
regarding the choice of the model p0, the uncertainty surrounding the data and calibration, and it is
appropriately chosen based on the usage of the model.

Since U is a subset of the normal neighbourhood around p0, the exponential map is well defined and
we can construct a corresponding set of models close to p0:

U = expp0(U) = {p ∈M | d(p0, p) ≤ α(v)}, (2)

From now on, we shall require the boundary ∂U = {expp0(α(v) v) | v ∈ S(p0, 1)} to be continuous and
piecewise regular. Moreover, U shall be a compact star–shaped set with respect to p0 that is defined as
follows:

Definition 4.1 A compact subset U of a Riemannian manifold M is called star–shaped with respect
to p0 ∈ U if for all p ∈ U, p 6= p0 there exists a geodesic segment γ with γ(0) = p0 connecting p0 and
p such that γ(t) ∈ U for all t ∈ [0, α(v)], where α(v) > 0, with v ∈ U .

One advantage of the exponential map in this setting is that we can avoid calibration of different
alternative models inside U . For each unit vector v ∈ U there exists a unique geodesic connecting points
on the boundary of U with the point p0. This geodesic is given by γ(t) = expp0(tv) for t ∈ [0, α(v)].

5 Weight Function Definition

Variations of the chosen model are not equally material and they all might take place with different
probabilities. By introducing a non–linear weight function (kernel), K, over the set U we can easily
place relative relevance to each alternative model, and assign the credibility of the underlying
assumptions that would make alternative models partially or relatively preferable to the nominal one
p0. The particular choice of the structure of the kernel depends on various factors, such as usage of
the model, distance from p0 or sensitivity to different changes.
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In what follows we define a general weight function K and show that under certain conditions it is
well defined and unique. In general, we consider K to be a non–negative and continuous function
that depends on the local geometry of M by incorporating a Riemannian volume associated to the
Fisher–Rao information metric, which given by dv(p) =

√
det(I(θ))dθ. The volume measure is the

unique Borel measure on M ([11]). With respect to a coordinates system, the information volume of
p represents the amount of information the single model possesses with respect to the parameters.
For example, a small dv(p) means that the model contains much uncertainty and requires many
observations to learn.

As the underlying factors7 that influence the perturbations of the given model happen with some
likelihood, we treat all models inside M as random objects. As a consequence, we require K to be
a probability density with respect to the Riemannian volume, i.e.

∫
MKdv(p) = 1. Additionally, we

state that the right model does not exist and that the choice of p0 was to some extent a subjective
preference.

Definition 5.1 An admissible weight function K defined on M satisfies the following properties:

(K1′) K is continuous on M,

(K2′) K ≥ 0 for all p ∈M,

(K3)
∫
MKdv(p) = 1.

Recall that to compute the n–dimensional volume of the objects in M, one considers a metric tensor
on the tangent space TpM. In particular, the Fisher–Rao information metric I onMmaps each p ∈M
to a volume dv(p) which is a symmetric and n–form that further defines an n–dimensional volume
measure on any measurable subset U ⊂ M by Vol(U) =

∫
U dv(p). A smooth probability density K

over M with respect to the Riemannian measure induces a new absolutely continuous probability
measure ζ with respect to Vol

ζ(U) =

∫
U
dζ =

∫
U
Kdv(p) (3)

for all measurable U ⊂ M and ζ(M) = 1. The pair (M, ζ) is then called a weighted manifold, or
a Riemannian metric–measure space and is proved to be a nontrivial generalization of Riemannian
manifolds ([17]).

The weight function K of the Definition 5.1 represents a general characterization of a probability
density over the Riemannian manifold M. In order to tune K for proper analysis of model risk, we
need to impose additional properties which are connected with the specific uncertainties surrounding
the given model.

7For example the uncertainty surrounding data, calibration or model selection.
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From a practitioner point of view, models that do not belong to the chosen neighbourhood U are not
relevant from the perspective of model risk, and so they do not add any uncertainty. Therefore, we
assume the weight function K to be non–negative only over the neighbourhood U and zero elsewhere.
Moreover, translation of the changes in various underlying assumptions, data or calibration into the
changes in output and further usage of the model are going to vary with respect to the direction of
the change. Hence, we require K to be continuous along the geodesic curves γ uniquely determined
by v ∈ S(p0, 1) ⊂ Tp0M starting at p0 and ending at the points on ∂U . These additional properties
motivate the following respective modifications of (K1′) and (K2′) in previous Definition 5.1:

(K1) K is continuous along all geodesics γ starting at p0 for all unit vectors on S(p0, 1) and ending
at the points on ∂U

(K2) K > 0 for all p ∈ U\{∂U}, K ≥ 0 for all p ∈ ∂U , and K = 0 for all p ∈M\{U}

A weight function satisfying properties (K1)−(K3) takes into consideration and is adjusted according
to the different directions of the changes, i.e. prescribes different sensitivities to different underlying
factors.

The construction of a weight function on a given Riemannian manifold may become technically difficult
since it requires precise knowledge of the intrinsic geometry and the structure of the manifold. In
order to overcome this difficulty and to determine a weight function K that satisfies all the required
properties, we introduce a continuous mapping from a manifold endowed with an Euclidean geometry
to the model manifold endowed with a Riemannian geometry that preserves the local properties. In
summary, we construct three mappings: the exponential map expp0 , the polar transform P and a
further coordinate transform Λρ. Euclidean geometry is well understood and intuitive, and thus a
construction of a function on this space is considerably easier and more intuitive. The steps of the
construction and the associated proofs are presented in the Appendix (see Sec. 9), as we believe this
will improve the readability and flow of the article.

6 Measure of Model Risk

In this section we introduce a definition of the quantification of model risk, relate it to the previously
introduced concepts and study some realistic applications.

Recall that we have so far focused on a weighted Riemannian manifold (M, I, ζ) with I the Fisher–Rao
metric and ζ as in Eq. (3). The model was assumed to be identified with a distribution p ∈M. More
likely, a practitioner would define the model as some mapping f :M→ R with p 7→ f(p), i.e. a model
outputs some quantity.8

8This is not always the case but we can proceed along these lines depending on the usage to be given to the quan-
tification itself. For example, an inter(extra)polation methodology on a volatility surface is a model whose output is
another volatility surface, not a number. If we want to quantify the model risk of that particular approach for Bermudan
derivatives we might consider its impact on their pricing.
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We introduce the normed space (F , ‖·‖) such that f ∈ F . Though not strictly necessary at this stage
we shall assume completeness, so that (F , ‖·‖) is a Banach space.

Definition 6.1 Let (F , ‖·‖) be a Banach space of measurable functions with respect to ζ. The model
risk Z of f ∈ F and p0 is given by

Z(f, p0) = ‖f − f(p0)‖ . (4)

Note that the measure represents the standard distance. All outcomes are constrained by the
assumptions used in the model itself and so, the model risk is related to the changes in the output
while relaxing and changing them.

The quantification of model risk itself can be thought of as a model with a purpose such as provisions,
capital calculation or comparison of modelling approaches. Possibilities are endless, so we might have
started with some T : F → F and set Z(f, p0) = ‖T ◦ f‖;9 however, we think Eq. (4) is general
enough for our present purposes.

In what follows we consider four examples of Def. 6.1. Their suitability very much depends among
other factors on the purpose of the quantification, as we shall see later.

1. Z1(f, p0) for f ∈ L1(M) represents the total relative change in the outputs across all relevant
models:

Z1(f, p0) = ‖f − f(p0)‖1 =

∫
M

∣∣∣f − f(p0)
∣∣∣dζ.

2. Z2(f, p0) for f ∈ L2(M) puts more importance on big changes in the outputs (big gets bigger
and small smaller). It would allow to keep consistency with some calibration processes such as
the maximum likelihood or least square algorithms:

Z2(f, p0) = ‖f − f(p0)‖2 =

(∫
M

(
f − f(p0)

)2
dζ

)1/2

.

3. Z∞(f, p0) for f ∈ L∞(M) finds the relative worst–case error with respect to p0:

Z∞(f, p0) = ‖f − f(p0)‖∞ = ess sup
M

∣∣∣f − f(p0)
∣∣∣.

Furthermore, it can point to the sources of the largest deviances: Using exp−1
p0 we can detect the

corresponding direction and size of the change in the underlying assumptions.

9For example, another possibility is to use
∥∥∥ f
f(p0)

∥∥∥ or
∥∥∥ f−f(p0)f(p0)

∥∥∥. These functional forms would allow us to obtain a

dimensionless number which might be a desirable property.
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4. Zs,p(f, p0) for f ∈ W s,p(M) is a Sobolev norm that can be of interest in those cases when not
only f is relevant but its rate of change:10

Zs,p(f, p0) = ‖f − f(p0)‖s,p =

( ∑
|k|≤s

∫
M

∣∣∣∂k(f − f(p0)
)∣∣∣pdζ)1/p

.

A sound methodology for model risk quantification should at least consider the data used for building
the model, the model foundation, the IT infrastructure, overall performance, model sensitivity, scenario
analysis and, most importantly, usage. Within our framework we address and measure the uncertainty
associated with the aforementioned areas and the information contained in the models. The choice
of the embedding and proper neighbourhood of the given model takes into account the knowledge
and the uncertainty of the underlying assumptions, the data and the model foundation. The weight
function that assigns relative relevance to the different models inside the neighbourhood considers
the model sensitivity, scenario analysis, the importance of the outcomes with connection to decision
making, the business, the intended purpose, and also addresses the uncertainty surrounding the model
foundation. Besides, every particular choice of the norm provides different information of the model.
Last and most important, the model risk measure considers the usage of the model represented by the
mapping f .11

7 Application to Capital Calculation

In this section we contextualize the proposed framework by applying it to a credit risk model used
by a commercial bank. More specifically, we employ the proposed methodology for the quantification
of model risk to the probability of default (PD) model of high default portfolios used for capital
calculation.12 We analyze different scenarios and risk parameter assumptions in order to assess
how these scenarios affect the economic capital based on methodologies commonly applied by IRB
institutions.

In general, the purpose of the credit risk model is to estimate the PD of future credit losses on a
bank portfolio. For a given time horizon, the model generates a distribution—a probability density
function— of future losses that can be used to calculate the losses associated with any given percentile
of the distribution. In practice, banks concentrate on two such loss components: expected loss (EL)
and unexpected loss (UL). EL is the mean of the loss distribution and represents the amount that
a bank expects to lose on average on its credit portfolio over a given time horizon. In contrast, UL
refers to the risk of the portfolio that is computed as the losses associated with some high percentile
of the loss distribution (e.g., the 99.99th percentile), thus covering all but most extreme events. For
more details about credit risk, see for example [3].

10An example can be a derivatives model used not only for pricing but also for hedging.
11Or equivalently by any possible transformation T : F → F .
12Note that the purpose of the analysis is only to illustrate the proposed framework, and so it does not fully comprehend

all potential risks inherent in PD calculation.
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Capital models are usually based on three risk parameters: the PD, the loss given default (LGD) and
the exposure at default (EAD). Under the Basel II IRB framework, the PD per rating grade is the
average percentage of obligors that will default over a one–year period, EAD gives an estimate of the
amount outstanding if the borrower defaults, and LGD represents the proportion of the exposure that
will not be recovered after default. These parameters are aggregated from obligor level (risk bucket)
to portfolio level with the correlation set by the regulator or the financial entity.

Let N be the number of borrowers in a given loan portfolio. Assuming a uniform value of LGD, the
aggregated expected loss amount, L, can be calculated as the sum of individual Ls in the portfolio,
i.e.,

L =
N∑
i=1

EADi · LGDi · PDi. (5)

Based on the loss distribution, the capital requirement for a bank under the IRB approach at confidence
level α can be calculated simply as the difference between EL and the percentile for the level being
considered:

Cα(L) = qL(α)− EL (6)

where qL(α) is the α-quantile of L defined by P(L ≤ qL(α)) = α. In practice, the portfolio is
categorized into homogeneous risk buckets, j = 1, . . . ,M , and the capital calculation is done on the
risk–bucket level. The same default probability PDj and LGDj is then assigned for all borrowers in
each of these buckets.

When modeling credit risk losses, several sources of model risk may arise. Examples are the scarcity of
default events, lack of data driving calibration and backtesting, correlations between failures, wrong
way exposure (growing utilization of credit lines in case of an increase in PD), or independence of PD
and LGD.

For the purpose of illustration, we only focus on the quantification of the model risk arising from
the PD estimation on the level of capital, and so we assume both LGD and EAD be known and
independent of PD.

7.1 PD model (p0)

PD is the likelihood that an obligor will default within one–year given all currently available informa-
tion. We consider a particular internal model for the long–run PD estimation that serves the regulatory
purposes. The PD model is built on internal behavioral data and bureau information. Each customer
account is scored and the portfolio is categorized, with respect to the scoring, into M homogeneous
risk buckets. The number of defaults in each bucket is assumed to follow a binomial random variable,
in which the defaults are independent across customers and over time, and defaults occur with com-
mon probability. The underlying Point–in–time (PIT) PD model is calibrated to the latest observed
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PD, i.e. observed default frequency (ODF), that is just the approximation of the maximum likelihood
estimator of the parameter of the binomial distribution. PIT PD is then adjusted by the Central
Tendency (CT) to generate the long–run PD based on a combination of historical misalignment of the
underlying model and expert judgment. The Through–the–Cycle (TTC) PD, i.e. pooled PD for each
risk bucket, is given by the formula:

PDi = ODFi ·
CT

ODF
, (7)

where:

• ODFi is the observed default frequency obtained for each risk bucket i over the most recent
quarter of the calibration sample.

• CT refers to the Central Tendency used for the TTC adjustment that is based on external
macroeconomic data series in order to extend the internal ODF series.13

• ODF is the average ODF over the given segment portfolio.

Thus, the long–run observed default frequencies are calculated for each risk bucket, and are adjusted
to the average PD observed for each portfolio over a complete economic cycle. The PD therefore gives
the likelihood for obligors with a particular rating grade at the start of a given time period defaulting
within this period. The distribution of defaults under our simplifying assumptions would equal the
loss distribution of a portfolio for which all the borrowers had an EAD of 1, an LGD of 0.45 and a
maturity of 1 year.

The empirical analysis is based on a hypothetical portfolio that was elaborated in order to represent
the behavior of one particular segment consisting of N = 9860 clients. All customers are categorized
by risk scoring into buckets that are heterogeneous at a defined confidence level and represent the
grade of credit quality. We assume a portfolio consisting of ten buckets (M = 10) with a monotonous
PD related to the model scores: higher scores imply lower ODFs.

All customers within the same risk bucket are assigned the same ”pooled” PD, which can be thought
of as the average of individual PDs. This means that the pooled PD assigned to a risk bucket is a
measure of the average value of the PDs of customers in that bucket.

Risk buckets 1 2 3 4 5 6 7 8 9 10

PD 0.276 0.198 0.181 0.090 0.085 0.065 0.037 0.034 0.023 0.012

N(frequency) 0.007 0.012 0.021 0.055 0.066 0.088 0.176 0.280 0.241 0.056

Table 1: Normalized PD and frequency of accounts in the
portfolio across risk buckets.

13In case there is not enough data history in order to cover the whole economic cycle.
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The normalized PDs vary between 0.01143 and 0.27638 and decrease from lower to higher risk
ratings, although this decrease is moderate (Table 1). The distribution is highly skewed to the right
(as expected) with mean and variance equal to 0.4177 and 0.08768, respectively. The frequency of
accounts across buckets ranges from 0.70% to 28.89% (Table 1). The low PD buckets account for
the majority of the portfolio, where approximately 75% of the total accounts have PDs lower than 0.04.

There are many factors that influence the direction and the extent of the relations between the de-
velopments in defaults and the risk factors influencing solvency. These comprise the macro indicators,
market factors and idiosyncratic factors. For example, foreign clients tend to be more risky than do-
mestic; the risk of default is expected to grow with increasing interest rates, unemployment rate or
percentage deviation between the exchange rate level at which the individual loan was granted from
the actual exchange rates.

7.2 Quantification of Model Risk

The question of understanding the impact of the uncertainty surrounding PD on the capital calcu-
lation can be approached by obtaining a mathematical representation of the underlying statistical
distribution over the portfolio (see Figure 1). A change in the model assumptions or segmentation

Figure 1: Distribution of the PD within the portfolio

would represent a shift in the parameters defining the statistical distribution. 14 We propose to predict

14Note that we can equally well work with empirical distributions (histograms) and use the Fisher–Rao distance
between them [19]. However, to properly illustrate the aforementioned framework we approximate the portfolio by a
parametric probability distribution.
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the best future values of our given portfolio by using the 2–parameter Inverse Gaussian distribution
(ING) given by

p(x, λ, µ) =

(
λ

2πx3

)1/2

· exp

(
− λ

2µ2x
(x− µ)2

)

with mean µ and variance σ2 =
µ3

λ
. 15 This means that we consider our model space to be a manifold

of the ING distribution family, M, parametrized by (λ, µ).

The initial model, p0 ∈M, was estimated via Maximum Likelihood approach (MLE) with parameters
λ0 = 0.5418 and µ0 = 4.8075, i.e. p0 = ING(λ0, µ0). With this representation we take into
consideration how specific risk buckets perform within the default portfolio or, alternatively, the
weight of default of each grade within the portfolio.

The PD model allows one to estimate the probability of default for a particular segment across different
risk–buckets within the limits of defined parameters. The model represents a probability distribution
of several correlated and mutually interacting events. Note that the parameters of the distribution are
non–linear functions of the individual PD and N for each risk bucket, i.e. µ(PD,N) and λ(PD,N).
For the quantification of model risk, it is important to understand how the model integrates the
information provided by the sample and how sensitive it is to changes in the sample characteristics
(see Figure 2).

7.3 Identification of potential sources of model risk

To properly assess the model risk, we first need to identify and describe the potential sources of
model risk, covering the model assumptions, weaknesses and arbitrariness in the development process.
For the given PD model, the main risk may arise from the applied segmentation and risk scoring,
bias toward historical experience, unexpected moves in the exchange rate, relevant changes in macro
variables, missing values, incorrect structure and methodology, inappropriate factors used for the
TTC adjustment, or due to the subjective selection of some parameter values.

The impact of these risk sources should be expressed quantitatively and then combined based on
whether the separate model risks are independent, or some amplify each other, or counteract or
absorb each other. In what follows and for the sake of illustration, we concentrate on the risk inherent
in the applied segmentation arising from the PD estimation. The given model, p0, is only one possible
description of the data incorporating the expert knowledge and assumptions directed by the expected
use, as well as implementation constraints. Any uncertainty and errors in the estimation of PD influence
the required capital.

15The Inverse Gaussian density function represents a wide class of distributions, ranging from highly skewed distribution
to a symmetrical one as λ/µ varies from 0 to∞. For more details about the Inverse Gaussian distributions see for example
[24].
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Figure 2: Probability density functions of Inverse Gaussian distributions: The left panel shows densities
for different µ with λ = 0.5418. The right panel shows densities for different λ for µ = 4.8075. The
densities are unimodal with mode between 0 and µ. As µ/λ increases the distribution becomes more
skewed to the right and the mode decreases relative to the mean.

7.4 Choosing a suitable Riemannian metric

We develop our example on the assumption that the model space should resemble the metric properties
of a Riemannian manifold of negative curvature equipped with the Fisher–Rao information metric.
Since there are many possible choices of metrics on a given differentiable manifold, it is important to
consider the additional motivating properties of the Fisher–Rao information metric:

1. Fisher–Rao information metric is based on the notion of maximum entropy, which might be
geometrically interpreted by the possible trajectory in a statistical manifold that describes its
evolution. We can examine the degree of uncertainty by measuring the evolution of entropy in
the model space.

2. The Fisher–Rao information may be thought of as the amount of information a sample supplies
with respect to the problem of estimating the parameters. 16

3. The Fisher–Rao information metric determines a constant negative Gaussian curvature for the
ING distribution (for details see [7]). The metric is given by

g(λ, µ) =

 1

2λ2
0

0
λ

µ3

 .
Negative curvature guarantees that MLE estimates are well–defined and unique, [22].

In this metric, the model space has non–zero curvature and reflects model specification sensitivity
accurately.

16Since the MLE is asymptotically unbiased, the inverse Fisher information represents the asymptotic fluctuations of
the MLE around the true value.
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7.5 Neighbourhood selection

Following Section 4, defining a proper neighbourhood around the given model is a trade–off between
plausibility and severity in order to ensure that no harmful but plausible risks are missed and the
irrelevant risk factors are not included. As aforementioned, we focus on the sensitivity of the chosen
segmentation and the inherent uncertainty. Namely, we analyze the model risk arising from the
uncertainty about the default counts, and so, we ask how different could the model be if the default
counts were undercounted or overcounted under the assumption of the fixed number of risk buckets.

The default rates are calculated on the risk bucket level, and so the miss–estimation in each bucket
is going to contribute to the overall uncertainty. Therefore, we consider all possible deviations within
[−0.3, 0.3] standard deviation changes in each of the ODFi, i = 1, . . . , 10. 17 We take into account all
possible shifts in each bucket separately as well as all of the relevant combinations. The limit on the
deviation was set to preserve the heterogeneity among risk buckets in terms of PD and to restrict
the variability of nearby risk buckets, which could be influenced by the presence of outliers, noise or
variation in the density of the points on the manifold. 18

for the given manifold M and the point p0 ∈ M, in order to build the neighbourhood U we start
by fitting probability distributions to all of the combinations of the maximal ±0.3 standard devia-
tion changes in the corresponding ODFs ( i.e. 210 distributions), and first to 1 000 000 and then to
10 000 000 random combinations within the interval (−0.3, 0.3). The scale parameter varies in the
interval [λ1, λ2] = [0.517300, 0.565403] and the mean is in the interval [µ1, µ2] = [4.58638, 4.95968].
These fitted distributions form our chosen neighbourhood. 19 For illustration, Figure 3 represents the
3–dimensional embeddging of U , the set of alternative models around p0, determined by the estimated
ING distributions.

Within this chosen neighbourhood we can analyze and quantify the possible impact on the individual
shifts but also all of their possible combinations on the model output that might be capable of causing
material model movements. Notice the conservatism in the chosen neighbourhood.

Remark: Different adjusted data may result in the same distributions. Considering only movements
in the distribution guarantees that the quantification of model risk will not depend on double count
risk factors that are highly correlated with factors already included in the analysis.

7.6 Choosing an appropriate weight function

In what follows, we show how to estimate the weight function entirely from the data without
imposing any additional constraint or particular structure. Roughly speaking, once we assume that

17Recall that ODFs refer to the maximum likelihood estimators of the binomial distributions for each risk bucket.
18The given portfolio (sample) is going to constrain the specificity and sensitivity possible.
19The key idea is to leave the data to determine the neighbourhood, instead of imposing one. With increasing number

of sampled distributions we can see convergence also in the weight function (see Subsection 7.6) but also in the overall
calculated Model Risk (see Subsection 7.7).
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Figure 3: 3D multidimensional scaling embedding of U .
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the alternative models are random objects valued on the Riemannian manifold, the weight function
estimation consists of having the alternative models within U “contribute” to the estimate at a given
point according to their distances from p0.

More precisely, let (M, g) be a Riemannian manifold and let us consider p1, . . . , pn independent and
identically distributed random points onM with density function K(p). The estimate of K(p) is then
a positive function of the geodesic distance in U , which is then normalized by the volume density of
(U, g) to take into account for curvature. These estimators are an average of the weights depending
on the distance between pi and p0. Formally, using alternative models p1, . . . , pn we propose to define
the weight function by a map Kn : p ∈ U → Kn(p) ∈ R given by

Kn(p) =
1

ηp0(p)
wi ∀i = 1, . . . , n (8)

where ηp0(p) denotes the volume density function and wi are assigned weights, such that
∑n

i=1wi = 1.

The weights are determined as follows. First, we calculate the geodesic distance of all of the estimated
distributions inside U from p0. Next, we determine the number of levels m with respect to the maximal
distance from p0, i.e.

L(λi) = {p ∈ U | λi−1 < d(p0, p) ≤ λi} (9)

for a sequence λ1, . . . , λm with λm = max d(p0, p) and λi− λi−1 = λm/m. We set m = 5 000 in case of
1 001 024 distributions inside U and m = 50 000 for 10 001 024 alternative models inside U . Next, we
examine the number of distributions within all of these m level sets and based on the concentration
within these levels we calculate normalized weights, i.e. wi. The normalized average frequency of
alternative models within U for 1 001 024 and 10 001 024 with respect to the distance from p0 are
illustrated in Figs. 4 and 5, respectively. The resulting normalized weights are then multiplied by the
associated values of the volume density at p ∈ U .

Remark: The initial model and data single out a particular choice of a weight function through the
concentration and variations of the fitted probability distributions on the manifold.

7.7 Measure of Model Risk

The last step in our proposed framework is the choice of a proper norm and the evaluation of the
identified model risk described in Section 6. We suggest to use the L2(M) norm that in our particular
example guarantees the consistency with the Maximum likelihood used for estimation and amplifies
big changes in the outputs, i.e. capital level. With this choice, we obtain 20:

Z
(
C(p), p0

)
= ‖C(p)− C(p0)‖2 = 2.35× 10−4

20Model Risk calculated with 1 001 024 distributions with the weight function based on 5 000 level sets equals
2.33499704056 × 10−4 and Model Risk based on 10 001 024 distributions inside U with 50 000 distance levels equals
2.35152164064× 10−4.
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Figure 4: The figure represents the weight function given by the average concentration of the alternative
models with respect to their geodesic distance from p0 for 1 000 000 + 1024 alternative models with
5 000 level sets.

Figure 5: The figure represents the weight function given by the average concentration of the alternative
models with respect to their geodesic distance from p0 for 10 001 024 alternative models with 50 000
level sets.
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This means that the model risk from segmentation represents the 0.0235% variation of capital inside
U . 21 The model risk is obtained in terms of capital, thus allowing an easy interpretation.

8 Conclusions and Further Research

In this paper we introduce a general framework for the quantification of model risk using differential
geometry and information theory. We also provide a sound mathematical definition of model risk
using weighted Riemannian manifolds, applicable to most modelling techniques using statistics as a
starting point.

Our proposed mathematical definition is to some extent comprehensive in two complementary ways.
First, it is capable of coping with relevant aspects of model risk management, such as model usage,
performance, mathematical foundations, model calibration or data. Second, it has the potential to
asses many of the mathematical approaches currently used in financial institutions: Credit risk,
market risk, derivatives pricing and hedging, operational risk or XVA (valuation adjustments).

It is worth noticing that the approaches in the literature, to our very best knowledge, are specific in
these same two ways: They consider very particular mathematical techniques and are usually very
focused on selected aspects of model risk management.

There are many directions for further research, all of which we find to be both of theoretical and of
practical interest. We shall finish by naming just a few of them:

Banach spaces are very well known and have been deeply studied in the realms of for example
functional analysis. On the other hand, weighted Riemannian manifolds are non–trivial extensions
of Riemannian manifolds, one of the building blocks of differential geometry. The study of Banach
spaces over weighted Riemannian manifolds shall broaden our understanding of the properties of
these spaces as well as their application to the quantification of model risk.

Our framework can include data uncertainties by studying perturbations and metrics defined on the
sample, which are then transmitted to the weighted Riemannian manifold through the calibration
process.

The general methodology can be tailored and made more efficient for specific risks and methodologies.
For example, one may interpret the local volatility model for derivatives pricing as an implicit
definition of certain family of distributions, extending the Black–Scholes stochastic differential
equation (which would be a means to define the lognormal family).

21Note that this refers only to one source of model risk inherent in the model for capital calculation.
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Related to the previous paragraph, and despite the fact that there is literature on the topic, the
calculation of the Fisher–Rao metric itself deserves further numerical research in order to derive more
efficient algorithms.
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9 Appendix

In this Appendix we present the construction of the weight function and the associated proofs.

9.1 Weight Function Construction

Every Riemannian manifold M is locally diffeomorphic to the Euclidean space Rn, and so in a small
neighbourhood of any point the geometry ofM is approximately Euclidean. All inner product spaces
of the same dimension are isometric, therefore, all the tangent spaces TpM on a Riemannian manifold
M are isometric to the n–dimensional Euclidean space Rn endowed with its canonical inner product.
Hence, all Riemannian manifolds have the same infinitesimal structure not only as manifolds but also
as Riemannian manifolds.

The weight function is defined with respect to the neighbourhood U and is continuous on the geodesic
curves γ connecting p0 to the points on the boundary ∂U . All material perturbations, i.e. alternative
models inside U , are uniquely described by the distances from p0 and by the vectors tangent to the
unique geodesics γ that pass through them. In order to maintain these properties, we consider an n–
dimensional cylinder Cn = [0, 1]× Sn−1 = {(t, ν) : t ∈ [0, 1], ν ∈ Sn−1} ⊂ Rn+1, where the parameter t
stands for the normalized distance of geodesics, and where Sn−1 denotes the (n− 1)–dimensional unit
sphere on Rn containing all the unit tangent vectors of Tp0M. The boundaries of Cn are

∂1C
n = {(0, ν) | ν ∈ Sn−1}, ∂2C

n = {(1, ν) | ν ∈ Sn−1},

and represent the end points of the geodesics, i.e. ∂1C
n will be transformed into p0 and ∂2C

n into
∂U .

The Riemannian structure on Cn is given by the restriction of the Euclidean metric in Rn+1 to Cn.
Hence, Cn is a compact smooth Riemannian manifold with a canonical measure given by the product
measure dt×dν. This manifold allows us to construct an appropriate function on Cn, and then obtain
a weight function satisfying all required properties (K1)− (K3).

As a first step to obtain a mapping from Cn to M, we consider the exponential map from the
tangent space at the point p0 onto the neighbourhood U . Since U is a subset of the normal
neighbourhood of p0, the exponential map is well–defined and it defines a local diffeomorphism
from Tp0U to U . The geodesics γ are then given in these coordinates by rays emanating from the origin.

Next, we introduce a polar coordinate transformation on Tp0M. For the sake of distinction, we denote
by S(p0, 1) the (n− 1)–dimensional unit sphere in Tp0M, and by Sn−1 the unit sphere in Rn:

P : [0,∞)× S(p0, 1)→ Tp0M : P (t, v) = tv,

P−1 : Tp0M\{0} → (0,∞)× S(p0, 1) : P−1(v) =
(
‖v‖ , v

‖v‖

)
.

(10)
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In order to properly describe the neighbourhood U , we define the distance function to the points
on the boundary of the neighbourhood along the geodesic γv(t). For p0 ∈ M and a unit vector
v ∈ S(p0, 1) ⊂ Tp0M, we define the distance ρ(v) by

ρ(v) = sup
t>0
{tv ∈ U | d(p0, γv(t)) = t},

as the distance from the origin to the boundary ∂U in direction v ∈ S(p0, 1), i.e.
U = {tv : 0 ≤ t ≤ ρ(v), v ∈ S(p0, 1)}. In other words, ρ(v) is the maximal distance in direc-
tion v to the boundary ∂U . The point γv(ρ(v)) is the boundary point of U along the geodesic γv(t).
The geodesic γv(t) minimizes the distance between p0 and expp0(tv) for all t ∈ [0, ρ(v)]. The distance ρ,
considered as a real valued function on S(p0, 1), is strictly positive and Lipschitz continuous on S(p0, 1).

We now define the coordinate transformation

Λρ : (t, ν) 7→
(
ρ(v)t, v

)
.

The mapping Sn−1 → S(p0, 1), ν 7→ v is well defined in the sense that there exists a canonical
identification between a unit vector ν ∈ Sn−1 ⊂ Rn and the element v ∈ S(p0, 1) ⊂ Tp0M. Since
the distance v 7→ ρ(v) is strictly positive and Lipschitz continuous on S(p0, 1), so is the inverse

v 7→ 1

ρ(v)
. Therefore, the mapping Λρ defines a bi–Lipschitz mapping from [0, 1] × Sn−1 onto the

subset [0, ρ(v)]× S(p0, 1).

The composition expp0 ◦PΛρ defines a mapping from Cn onto U that maps ∂1C
n onto the point {p0}

and the right hand side boundary onto ∂U . Thus, the image of a continuous function f on U is also
continuous on Cn, but not every function h on Cn is the image of a continuous function on U under the
pull back operator Λ∗ρP

∗exp∗p0 . In order to identify a continuous function h on Cn with a continuous
function f on U , the function h has to satisfy additional consistency conditions.

Definition 9.1 A continuous function h defined on a cylinder Cn is called consistent with a contin-
uous function f on U under the mapping expp0 ◦PΛρ if h = f(expp0 ◦ PΛρ). In this case, h satisfies
the following consistency conditions:

(i) h(0, ν1) = h(0, ν2) ∀ν1, ν2 ∈ Sn−1,

(ii) h(1, ν1) = h(1, ν2) if expp0 PΛρ(1, ν1) = expp0 PΛρ(1, ν2) on M.

The first condition (i) implies that h is constant on the boundary ∂1C
n. When the function h on Cn

is consistent with f , the constant value at ∂1C
n corresponds exactly with the value f(p0). The second

condition ensures compatibility of function h with function f at the points of the boundary ∂U , i.e.
if expp ◦PΛρ maps two different points (1, ν1) and (1, ν2) in Cn onto the same point p ∈ ∂U , then
h(1, ν1) = h(1, ν2) = f(p).

Lemma 9.2 The existence of the weight function K satisfying assumptions (K1)−(K3) is equivalent
to assuming the existence of a consistent function h defined on Cn with codomain R that satisfies the
following properties:
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(H1) h is a continuous function on the compact manifold Cn,

(H2) h(t, ν) > 0, (t, ν) ∈ [0, 1)× Sn−1,

(H3) h(1, ν) = κ(ν) for all ν ∈ Sn−1, where κ is some non–negative function of ν,

(H4) h(0, ν1) = h(0, ν2) = const. for all ν1, ν2 ∈ Sn−1,

(H5)
∫
Cn h(t, ν)dς = 1, where dς = dt× dµ.

Proof of Lemma 9.2. In order to prove the stated equivalence, we need to show that the function
h defined in Lemma 9.2 preserves the required properties of K under the continuous mapping
expp0 ◦PΛρ. First, we show that the composition of three different mappings is well defined.

As a first step, we define an n–dimensional cylinder

Cn := [0, 1]× Sn−1 = {(t, ν) | t ∈ [0, 1], ν ∈ Sn−1} ⊂ Rn+1,

where Sn−1 := {ν ∈ Rn | ‖ν‖2 = ν2
1 + · · · + ν2

n = 1} denotes the (n − 1)−dimensional unit sphere in
Rn. The cylinder Cn is a differentiable submanifold of Rn+1 with boundaries

∂1C
n := {(0, ν) | ν ∈ Sn−1}, ∂2C

n := {(1, ν) | ν ∈ Sn−1}.

A Riemannian structure on Cn is given by the restriction of the Euclidean metric in Rn+1 to Cn.
Thus, Cn is a compact Riemannian manifold. A canonical measure on Cn is given by the product
measure dt× dµ(ν), where µ denotes the standard surface measure on Sn−1.

We introduce a distance function to the points on the boundary of the neighbourhood along the
geodesic γv(t). For p0 ∈M and a unit vector v ∈ S(p0, 1) ⊂ Tp0M, we define the distance ρ(v) by

ρ(v) = sup
t>0
{tv ∈ U | d(p0, γv(t)) = t}

as the distance from the origin to the boundary ∂U in direction v ∈ S(p0, 1), i.e.
U = {tv : 0 ≤ t ≤ ρ(v), v ∈ S(p0, 1)}. In other words, ρ(v) is the maximal distance in direc-
tion v to the boundary ∂U . The point γv(ρ(v)) is the boundary point of U along the geodesic γv(t).
The geodesic γv(t) minimizes the distance between p0 and expp0(tv) for all t ∈ [0, ρ(v)]. The distance ρ,
considered as a real valued function on S(p0, 1), is strictly positive and Lipschitz continuous on S(p0, 1).

Note that since U is the subset of the normal neighbourhood with respect to p0, the exponential map
is isometric. From now on we will assume that U is a compact star–shaped subset of a Riemannian
manifold M and the distance function ρ is Lipschitz continuous on S(p0, 1) ⊂ Tp0M. Lipschitz
continuity of ρ(v) is equivalent to the assumption of continuity and piecewise regularity of ∂U .

Now we define an n−dimensional subset of Cn by

Cnρ := {(t, v) | t ∈ [0, ρ(v)], v ∈ Sn−1} ⊂ [0, 1]× Sn−1,
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with boundaries

∂1C
n
ρ := {(0, v) | v ∈ Sn−1}, ∂2C

n
ρ := {(ρ(v), v) | v ∈ Sn−1}.

The new set Cnρ is a compact subset of Cn. In order to map Cn onto Cnρ we define the following
coordinate transform:

Λρ : Cn → Cnρ , (t, v)→
(
ρ(v)t, v

)
.

Since the distance function v 7→ ρ(v) is strictly positive and Lipschitz continuous on S(p0, 1), so it is

the inverse function v 7→ 1

ρ(v)
. Therefore, the mapping Λρ defines a bi–Lipschitz mapping from Cn

onto Cnρ . The Jacobian determinant of Λρ equals ρ almost everywhere on Cn.

Next we consider the polar transformation P defined by equation 10 which is well defined by continuity
in Tp0M, and maps Cnρ onto U ⊂ Tp0M. Moreover, the transformation P defines a diffeomorphism
from Cnρ \{∂1C

n
ρ , ∂2C

n
ρ } onto the open set U\{0, ∂U}. Combining P with the exponential map expp0 ,

we have

expp0 ◦P (Cnρ ) = U.

The composition expp0 P defines a diffeomorphism from Cnρ \{∂1C
n
ρ , ∂2C

n
ρ } onto U\{p0, ∂U}. Further-

more, the boundary ∂1C
n
ρ is mapped onto {p0} and the boundary ∂2C

n
ρ onto the boundary ∂U 22.

Then the points (t, v) ∈ Cnρ induce geodesic polar coordinates on Rn.

We have introduced three mappings

Cn
Λρ−→ Cnρ

P−→ U
expp0−−−→ U ⊂M

The composition expp0 ◦PΛρ is a continuous mapping from Cn onto U . Moreover, expp0 ◦PΛρ maps
the boundary ∂1C

n of the cylinder Cn onto the point p0 and the boundary ∂2C
n onto ∂U .

Now we prove that a consistent function satisfying properties (H1) − (H5) uniquely determines the
weight function satisfying (K1)− (K3):

• It is straightforward to see, that properties (K1) − (K2) are satisfied by construction. The
composition expp0 ◦PΛρ preserves connectedness and compactness and it a continuous mapping
from Cn onto M. Moreover, expp0 ◦PΛρ maps the left hand boundary ∂1C

n onto the point p0

and the right hand boundary ∂2C
n onto the boundary of U . Hence, the image f(expp0 ◦PΛρ) of

a continuous function f onM is also continuous on the cylinder Cn, and every function g defined
on Cn satisfying consistency properties (i) − (ii) of Definition 9.1 is the image of a continuous
function on M under the pull–back operator Λ∗ρP

∗ exp∗p0 .

22When p0 ∈ ∂U , the boundary ∂2C
n
ρ is mapped onto ∂U\{p0}
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The composition expp0 ◦PΛρ applied to a function h that is continuous on Cn and satisfies
the consistency conditions (i) − (ii) of Def.9.1 will give us a continuous function K on M
that by construction is continuous along the geodesics starting at p0 and ending at the points
of the boundary. That means, property (K1) is satisfied. The same argument applies to any
non–negative function h on Cn. Thus, properties (H1) − (H2) ensures (K1) − (K2) under the
composition expp0 ◦PΛρ(v).

• Further, it remains to prove that the weight function K is indeed a probability density on M
with respect to the measure dv(p), i.e. to show that

∫
M dζ = 1.∫

M
dζ =

∫
M
K(p)dv(p) =

∫
Tp0M

K(expp0(v))ηp0(v)dξ,

where dξ is the standard Lebesgue measure on the Euclidean space Tp0M and ηp0(v) =
det((d expp0)v) is the Jacobian determinant of the exponential map. Note that ηp0(v) represents
the density function that is a positive and continuously differentiable function on U ⊂ Tp0M.
Further, we have∫

Tp0M
K(expp0(v))ηp0(v)dξ =

∫
S(p0,1)

∫ ρ(v)

0
tn−1K(expp0(tv), t)ηp0(tv)dtdµ(v),

where tn−1 is the Jacobian determinant of the polar coordinate transformation and dµ(v) is the
standard Riemannian measure on the unit sphere S(p0, 1). The last step is the mapping from
Cρ to Cn: ∫

S(p0,1)

∫ ρ(v)

0
tn−1K(expp0(tv), t)ηp0(tv)dtdµ(v)

=

∫
Sn−1

∫ 1

0

1

ρ(ν)
K
(

expp0(ρ(ν)tν, t)
)(
ρ(ν)t

)n−1
ηp0(ρ(ν)tν)dtdµ(ν),

where the Jacobian determinant is
1

ρ(ν)
. Then using the expression for K we have that the

expression above is equal to:∫
Sn−1

∫ 1

0

1

ρ(ν)

1

ηp0(ρ(ν)tν)
t1−nρ(ν)2−nh

(
t

ρ(ν)
, ν

)(
ρ(ν)t

)n−1
ηp0(ρ(ν)tν)dtdµ(ν)

=

∫
Sn−1

∫ 1

0
h
(
t, ν
)
dtdµ(ν) = 1.

�

Using this result, the construction of the weight function becomes easier and more intuitive. One
chooses the appropriate function h defined on Cn with respect to the particular model and the un-
certainty surrounding it. Then, applying the above transformation one obtains an appropriate weight
function K defined on U satisfying properties (K1)− (K3) relevant for model risk analysis. Besides,
for a chosen function h the weight function K is unique and well defined.
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Theorem 9.3 A continuous function h defined on Cn satisfying conditions (H1)− (H5), determines
a unique and well–defined weight function K satisfying (K1) − (K3) on U . More precisely, the map
K : U → R, which to each point p, associates the value K(p) given by

K(p) =
1

ηp0(p)
t1−nρ(v)2−nh

(
t

ρ(v)
, v

)
, (11)

where ηp0(p) is the volume density with respect to p0
23, v is the tangent vector, t ∈ [0, ρ(v)] is a scaling

parameter, and ρ(v) is the distance function defined above.

Proof of Theorem 9.3. Note that the composition expp0 ◦PΛρ induces a change of variables for inte-
grable function f that yields to the following formula:∫

M
f(p)dζ =

∫
U
f(p)dζ =

∫
U
f(expp0(v))ηp0(v)dv

=

∫
S(p0,1)

∫ ρ(v)

0
tn−1f(expp0(tv))ηp0(tv)dtdµ(v)

=

∫
Sn−1

∫ 1

0

1

ρ(ν)
f(expp0(ρ(ν)tν))(ρ(ν)t)n−1ηp0(tρ(ν)ν)dtdµ(ν).

The volume density ηp0 is a well–defined, non–negative function in a neighborhood of p0 (globally
it may be defined using the Jacobi fields ([25], p.219 )). Besides, ηp0 is a continuous and differen-
tiable function on M24. The distance function ρ is a well defined, strictly positive and Lipschitz
continuous function on S(p0, 1), and thus is the inverse 1/ρ(ν). Therefore, the mapping Λρ defines a
bi–Lipschitzian mapping from Cn to Cnρ . Moreover, the composition expp0 ◦P defines a diffeomorphism
from Cnρ {∂1C

n
ρ , ∂2C

n
ρ }. Then, using the fact that the point set {p0} and the boundary of U are subsets

of tν−measure zero, we can conclude that the mapping expp0 ◦PΛρ is an isomorphism. Then, for any
h defined on Cn satisfying conditions (i) − (ii) of Definition 9.1, the associated weight function K
is well defined and continuous on U . The uniqueness of K follows after specifying a function h that
satisfies properties (H1)− (H5). �

23In terms of geodesic normal coordinates at p0, ηp0(p) equals the square++root of the determinant of the metric g
expressed in these coordinates at exp−1

p0
(p). For p and q in a normal neighbourhood U ofM, we have ηp(q) = ηq(p) [25].

24Note that when M is Rn with the canonical metric, then ηp0(p) = 1 for all p ∈ Rn.
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