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Abstract

This work deals with the automatic selection of model points portfolios of life
insurance policies that reproduce the original portfolio, in the sense that they
retain the market risk properties of the initial portfolio. In order to achieve this
goal, we �rst propose a risk functional that incorporates the uncertain evolution
of forward LIBOR rates to the portfolios of life insurance policies.

Once we have chosen the proper risk functional, the problem of �nding the
model points of the replicating portfolio is formulated as a problem of minimiz-
ing the distance between the original and the target model points portfolios,
under the measure given by the proposed risk functional. In this way, a high
dimensional global optimization problem arises and a suitable hybrid global
optimization algorithm is proposed for the e�cient solution of this problem.

Several examples illustrate the performance of parallel computing tools for
the evaluation of the risk functional, as well as the e�ciency of the hybrid Basin
Hopping optimization algorithm to obtain the model points portfolio.

Keywords: Model points portfolio; LIBOR market model; risk functional;
hybrid optimization algorithms; Monte Carlo simulation

1. Introduction

A very relevant problem in life insurance companies is the so called Asset
Liability Management (ALM), which consists of the joint management of assets
and liabilities portfolios, to ensure the future wealth and pro�tability of the in-
surance company (for example, see [6, 10] and the references therein). For this
purpose, it is important to compute the joint projection of the future cash�ows
of both portfolios, which can be done numerically by using Monte Carlo algo-
rithms. Computing these projections with the original portfolios, with a high
number of policies (hundreds of thousands) in the liabilities side, can lead to
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a highly demanding computational time task or even prohibitive in reasonable
time schedules.

Having this in view, insurance companies are allowed to compute these pro-
jections by replacing any homogeneous group of policies with some suitable
representative contracts, usually known as the related model points. This pro-
cedure is permitted under suitable conditions in such a way that the inherent
risk structure of the original portfolio is not misrepresented. We refer to the
document [5] for further details. For example, in [4], this models points repre-
sentation is performed by controlling the impact on Tail-Var and related risk
measures.

This new portfolio could be understood as a compressed version of the orig-
inal one that should retain the same risk properties as the original portfolio,
once we have chosen a proper function to measure the associated risk in this
replacement. The problem can be framed in the domain of portfolio represen-
tation, where the risk functional gauges the averaged di�erences between the
values of original and model points portfolio, the last one taken in a speci�c set
of portfolios [9]. The risk measure is usually gauged in terms of the �uctuation
of some underlying stochastic risk factors inside a time horizon. The interest
rate term structure and the mortality trend of the population are two of the
main factors when dealing with the valuation and the risk management of life
insurance products [12]. In the present paper, as a �rst attempt to introduce
the proposed mathematical and computational methodologies for the automatic
selection of model points, we just consider the uncertain future �uctuations of
interest rates by considering a LIBOR market model for forward LIBOR rates.
Additional risk factors could be considered in future works, as well as the de-
pendence among them when more than one risk factor is considered.

However, even after choosing the right risk measure functional, �nding the
structure of the model points portfolio regarding this risk measure can result into
a very hard computational problem. Finding the new model points portfolio can
be posed as an optimization problem, where we have to minimize the distance
between both portfolios in terms of the chosen risk measure.

The main goal of this article is to develop an original technique for the auto-
matic generation of the model points portfolio. This objective mainly involves
two tasks. First, we have to choose/�x and build a correct risk measure attend-
ing to market models. In our case we will build this measure using the LIBOR
market model for forward interest rates (see [1], for details). Secondly, once we
have formulated the problem in terms of a distance minimization based on this
measure, we need to numerically compute this objective function in a highly
e�cient way, as next we have to build a numerical optimization method for the
minimization of this objective function. As we will see, the resulting optimiza-
tion problem is a global optimization one, so that e�cient global optimization
algorithms have to be built. More precisely, the algorithms need to be fast and
robust, so that they won't get stuck in local minima.

The structure of the paper is as follows. In Section 2, we recall the LIBOR
market model that will be one of the building blocks of our risk functional. In
Section 3, we describe the model points portfolio selection problem. In Section
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4, we present the de�nition of the LIBOR based risk measure. In Section 5, we
show the numerical discretization of the problem. In Section 6, we show some
numerical examples: �rst, we show the parallel performance of the cost func-
tion implementation; secondly, we show some examples with known solution to
validate the convergence of the optimization algorithm to the analytical solu-
tions; and �nally we show an application to a real portfolio without analytical
solution.

2. Model setup. LIBOR Market Model

In this section, following [1] we describe the risk-free dynamics of the dis-
counted bond price, when considering the LIBOR Market Model governing the
time evolution of the forward rates.

Libor rates. Let N be a positive integer and hence de�ne the �nite set T =
{T0, T1, ..., TN} to be a �xed tenor structure, with T0 = 1 and T0 < T1 <
... < TN , so that Tn corresponds to a speci�c maturity time. We write τn ,
Tn−Tn−1, for n = 1, ..., N , to denote the corresponding accruals. Moreover, we
set I , (0, 1) to be the unit interval on the real line, which corresponds to the
period of one year.

Here and in the sequel, we shall write Bn(t) to denote the risk-neutral dis-
counted price at time t ∈ I of a (zero-coupon) bond expiring at the tenor date
Tn, for any n = 0, ..., N . Moreover, we shall denote by Fn(t) the value at time
t ∈ I of the (simply-compounded) LIBOR forward rate associated to the ac-
crual period (Tn−1, Tn], for n = 1, ..., N . In this respect, we recall that Fn(t) is
de�ned in such a way that the following condition is met:

Bn(t)(1 + Fn(t)τn) = Bn−1(t).

Hence, for any n = 1, ..., N we can write

Bn(t) = B0(t)

n∏
k=1

1

1 + Fk(t)τk
, for any t ∈ I.

It is worth to be highlighted that since t < Tn, for any t ∈ I and n = 0, ..., N ,
the price Bn(t) is always well de�ned.

Stochastic setting. Hereafter we shall always consider the price B0(t) of the
bond expiring at the tenor date T0 = 1, for t ∈ I, as the reference numeraire
process. Hence, we denote by Q the forward measure related to T0, i.e. the
martingale measure associated to the numeraire process B0(t), for t ∈ I.

Throughout this article, we shall �x a N -dimensional Wiener processW (t) =
(W1(t), ...,WN (t)), for t ∈ I, de�ned on the suitable complete probability space
(Ω,F ,Q), and we write % = (%nk)nk to denote the corresponding (positive
de�ned) correlation matrix, i.e.

dWn(t)dWk(t) = %nkdt.
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In particular, we shall assume constant correlation coe�cients given by the usual
parameterization:

%nk = exp(−β | Tn − Tk |),

with β = 0.01 in the numerical examples. Note that these coe�cients will
correspond to the correlation between LIBOR forward rates.

Moreover, for any given h = (h1, ..., hN ) ∈ R, we de�ne the following norm:

‖h‖W =

{ N∑
n,k=1

%nkhnhk

}1/2

.

Later on, any stochastic process shall be de�ned on the probability space
(Ω,F ,Q). Further, since Q is understood as the reference market measure, we
shall refer to any process de�ned on such a space as a risk-free process.

LIBOR Market Model. For each n = 1, ..., N , let σn(t), for t ∈ I, be a given
deterministic function. According to the LIBOR Market Model, given any �xed
n = 1, ..., N , the risk-free dynamics associated to the process Fn(t), for t ∈ I,
is de�ned as

dFn(t) = µn(t)dt+ σn(t)Fn(t)dWn(t), (1)

jointly with some given initial condition Fn(0), where, at any time t ∈ I, the
drift component µn(t) is completely determined by following identity:

µn(t) = σn(t)Fn(t)

n∑
k=1

%nkτkσk(t)Fk(t)

1 + Fk(t)τk
.

Concerning the modelling of volatilities, in this article we choose the widely
used parameterization:

σn(t) = [a+ b(Tn − t)] exp [(Tn − t)] + d

Furthermore, in the numerical examples we have chosen the constant parame-
ters: a = 0.07, b = 0.2, c = 0.6 and d = 0.075.

For any �xed t ∈ I, set µ(t) = (µ1(t), ..., µN (t)) and thus de�ne Σ(t) to be
the matrix whose components are given by

Σnk(t) = σn(t)Fn(t)δnk, for any n, k = 1, ..., N , (2)

where δnk denotes the Kronecker delta. Moreover, we shall write Σn(t) to
denote the nth row of the matrix Σ(t), for any n = 1, ..., N . Then, when setting
F (t) = (F1(t), ..., FN (t)), we may regard (1) as a N -dimensional dynamics by
means of the following compact form notation:

dF (t) = µ(t)dt+ Σ(t)dW (t), (3)

jointly with the initial condition F (0) = (F1(0), ..., FN (0)).
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Moreover, for any n = 1, ..., N we shall write

B̃n(t) =
Bn(t)

B0(t)
, for any t ∈ I,

to denote the discounted price processes associated to the bond expiring at the
tenor date Tn.

The following result provides the risk-free dynamics for the discounted price
of any bond expiring at some tenor date in T .

Lemma 1. For any n = 1, ..., N , the discounted bond price process B̃n(t) admits
the dynamics

dB̃n(t) = −εn(t)B̃n(t)dW (t), (4)

where we set

εn(t) ,
n∑

k=1

τk
1 + Fk(t)τk

Σk(t). (5)

Proof. Fix n = 1, ..., N and notice that according to the identity (1) the dis-
counted price p̃n(t) at time t ∈ I, that is given by (4), satis�es the following
condition:

ln B̃n(t) = −
n∑

k=1

ln(1 + Fk(t)τk).

For any di�usion process X(t), for t ∈ I, driven by the Wiener process W , let
DCX(t) denote its vector di�usion coe�cient. In particular, the representation
(3) implies that

DCFn(t) = Σn(t), (6)

for any t ∈ I. Thus, we obtain

DC ln B̃n(t) = −
n∑

k=1

DC ln(1 + τkFk(t))

= −
n∑

k=1

τk
1 + τkFk(t)

DCFk(t)

= −
n∑

k=1

τk
1 + τkFk(t)

Σk(t). (7)

In order to complete the proof, notice that

DCB̃n(t) = Bn(t)DC ln B̃n(t), for any t ∈ I.
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3. Insurance Policies Portfolio

In this section, we discuss the problem of the model points selection when
dealing with a portfolio of term insurance policies, i.e. those contracts that pay
a lump sum bene�t on the death of the policy owner, provided that it occurs
until a speci�c term that is de�ned in the contract. For the sake of simplicity,
we assume that the bene�t related to each policy to be always represented by a
unit amount of a certain currency.

We assume to deal with policies that are una�ected by credit risk, i.e. the
insurance company always guarantees the entire bene�t that is provided for in
the contract. On the other hand, we do not analyse the revenues received by the
insurance company and thus we do not take into account the premiums stream
of the contract nor any further expenses that are responsibility of the client.

Term insurance portfolios. We assume the generic term insurance policy within
a given portfolio to be labelled by both the age of the policy owner at time t = 0
and the term date of the contract. In this respect, let us �x I, J ∈ N and let
X = {x1, ..., xI} and Y = {y1, ..., yJ} be two �nite sets of real values such that
xi ≥ 0 and yj ≥ 1, for any i = 1, ..., I and j = 1, ..., J . Here and in the sequel,
any couple (xi, yj) uniquely de�nes the family of policies related to the class of
individuals that are aged xi ∈ X at time t = 0 and to the term of the contract
yj ∈ Y.

Next, for any i = 1, ..., I, we shall write µ(s, xi + s) to denote the force of
mortality at time s ≥ 0 related to the class of individuals labelled by xi ∈ X . In
this respect, we suppose that µ(s, xi + s) is a deterministic observable function,
for any xi ∈ X and s ≥ 0. Moreover, we shall make the convenient assumption
that

µ(s, xi + s) = 0, for any i = 1, ..., I and any s ∈ I. (8)

Remark 1. It is worth to be highlighted that the hypothesis (8) is convenient
since it guarantees that any portfolio of term insurance policies does not change
within the time interval I due to the death of the policy owners. Besides, such
an assumption is acceptable since the events occurring within the �rst year only
cause a minimal impact on the performance of the overall portfolio.

According to this setup, we de�ne the survival index as

S(xi, Tn) = exp

{
−
∫ Tn

1

µ(s, xi + s)ds

}
,

for any xi ∈ X and n = 1, ..., N , (9)

which is understood as the proportion of those individuals labelled by xi ∈ X
that survive to the age xi + Tn.

In particular, we consider a Gompertz-type law modelling the force of mor-
tality [11], by setting

µ(s, xi + s) = a(s) exp {(xi + s)b(s)}, for any s ≥ 1 and i = 1, ..., I,
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where a(s) and b(s) are deterministic functions for s ≥ 1, which are considered
to be observables. Assuming that a(s) = 0 for s ∈ I we guarantee that the
previous convenient assumption (8) holds. Throughout, we write ST to denote
the derivative of S in its second variable, which is given by

ST (xi, Tn) = −S(xi, Tn)µ(Tn, xi + Tn).

The following de�nition introduces the notation for the term insurance poli-
cies we shall consider later on.

De�nition 1. For any xi ∈ X and yj ∈ Y, the discounted risk-free value at
time t ∈ I of a term insurance policy owned by an individual with age xi ∈ X
and with term yj ∈ Y is given by

zij(t) = −
N∑

n=1

ST (xi, Tn)B̃n(t)1{Tn≤yj}. (10)

Any linear combination of the processes (10) gives the risk-free discounted
value of a term insurance portfolio. This is stated by the following de�nition.

De�nition 2. We call (term insurance) policy portfolio any matrix v = (vij)ij ,
for i = 1, ..., I and j = 1, ..., J . Moreover, for any policy portfolio v, its risk-free
discounted value v(t) at time t ∈ I is de�ned as

v(t) =
∑
ij

zij(t)vij . (11)

Given any policy portfolio v, we understand any of its components vij as the
amount of policies owned by the class of individuals labelled by the age xi ∈ X
and the term yj ∈ Y. In what follows, for any couple of policy portfolios v1 and

v2 we shall write (v1 − v2)(t) , v1(t)− v2(t), for any t ∈ I.

4. Model Points Risk Estimation

In this section we apply the theory presented in [9] to the previously in-
troduced LIBOR rates setting. More precisely, we take into account LIBOR
forward rates dynamics as the stochastic underlying stochastic factor. For this
purpose, we shall always assume a policy portfolio v relative to X and Y to be
a priori given. Moreover, we �x a set of term insurance policy portfoliosW and
we refer to any w ∈ W as a model points portfolio. In this setting we introduce
the following de�nition.

De�nition 3. We refer to the functional R(·|v) :W → R de�ned by setting

R(w|v) =

∫
I
E|(v − w)(t)− E(v − w)(t)|2dt, for any w ∈ W,

as the model points risk functional induced by v over W.
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We understand the model points risk functional R(w|v) as the error that
occurs when the policy portfolio v is replaced by some model points portfolio
w ∈ W. Such an error is assessed as the average changes of the di�erence of
the two portfolios in terms of the stochastic �uctuation of the interest rate risk
term structure.

De�nition 4. Let R(·|v) be the model points risk functional induced by v over
W. A model points portfolio w∗ ∈ W is said to be optimal relative to v if the
following inequality holds true

R(w∗|v) ≤ R(w|v), for any w ∈ W. (12)

Notice that, in the special case when v ∈ W one has that R(v|v) = 0. In this
respect, we regard any model points portfolio w∗ ∈ W satisfying the inequality
(12) as an optimal representation of the policy portfolio v.

The following result provides an alternative representation of the model
points risk functional induced by v over W.

Proposition 1. The model points risk functional induced by a portfolio v over
W admits the form

R(w|v) = E
{∫
I

∥∥∥∥∑
n

{∑
ij

(vij−wij)ST (xi, Tn)1{Tn≤yj}

}
εn(t)B̃n(t)

∥∥∥∥2
W

(1−t)dt
}
,

for any w ∈ W. (13)

Proof. Let E = RN and for any t ∈ I, set B̃(t) , (B̃1(t), ..., B̃N (t)). Thus, let
U = (X ×Y)R be the class of real matrices r = {r(xi, yj) : xi ∈ X , and yj ∈ Y}.

Consider the functional Z ∈ L(E,U) which is given for any q ∈ E by

Z(q)(xi, yj) , −
∑
n

qnST (xi, Tn)1{Tn≤yj}, for xi ∈ X and yj ∈ Y,

and note that the process z(t) = {z(t) : t ∈ I} de�ned by the identity (10) is
recovered when setting

z(t) = Z(B̃(t)), for any t ∈ I.

Since Z is linear, for any q ∈ E, the Frechét derivative ∇Z(q) ∈ L(E,U)
satis�es for any q′ ∈ E the following identity:

(∇Z(q)q′)(xi, xj) = −
∑
n

q′nST (xi, Tn)1{Tn≤yj}, for xi ∈ X and yj ∈ Y.

On the other hand, for any t ∈ I, when letting ε(t) be the matrix with the
nth row given by B̃n(t)εn(t), where εn(t) is de�ned in (5), we have that for any
xi ∈ X and yj ∈ Y, the following identity holds

(∇Z(·)ε(t))(xi, xj) = −
∑
n

B̃n(t)εn(t)ST (xi, Tn)1{Tn≤yj}. (14)
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Consider now the function ζ : I × E → U de�ned as

ζ(t, q) , Z(q), for any t ∈ I and q ∈ E. (15)

In this respect, it is worth to be highlighted that the identi�cation (15) is allowed
since the survival index (9) does not depend on t ∈ I, which is the case when
imposing the condition (8).

Then, since (4) may be rewritten as the following E-valued dynamics,

dB̃(t) = −ε(t)dW (t), (16)

then Proposition 5 in [9] can be applied to obtain

R(w|v) = E
{∫
I

∥∥∥∥∑
ij

(vij − wij)(∇Z(B̃(t))ε(t))(xi, xj)

∥∥∥∥2
H

(1− t)dt
}
,

for any w ∈ W. (17)

which, jointly with the identity (14), gives the representation (13).

Finally, with the previous notations we summarize that the selection of model
points policy portfolio w∗ for an original portfolio v is posed as the global
optimization problem

w∗(v) = argminw∈W R(w|v). (18)

In next section we describe the numerical techniques we propose for solving
the global optimization problem. As they are highly computational demanding
we also propose to take advantage of parallel computing techniques, which are
specially well-suited for the kind of numerical algorithms we handle.

5. Numerical methods

In view of the nature of the global optimization problem (18), for a given
original portfolio v, we need to propose e�cient numerical methods to minimize
the model points risk functional R(· | v), which is �nally given by expression
(13).

Note that the model points risk functional is identi�ed as the cost function
in the optimization literature.

The global optimization numerical methods we propose will require a very
large number of evaluations of the model points risk functional (13), which in
turn requires the simulation of the LIBOR rates dynamics. We will refer to
each evaluation as the discretization of the model points risk functional or cost
function. Each evaluation has to be performed as fast as can be allowed by the
available software and hardware computational tools. As we will consider Monte
Carlo techniques for the simulation of the forward LIBOR rates, the opportunity
of using parallel computing techniques for the evaluation of the cost function
comes into place.
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Therefore, in this section we describe the two main involved tasks in the
numerical methods. Thus, in Section 5.1 we show the numerical discretization
of the model points risk functional (13) and its parallel implementation. Next,
in Section 5.2, we discuss the proposed numerical methods for the global opti-
mization problem (18), which require very e�cient and fast evaluations of the
functional discretization.

5.1. Discretization of the model points risk functional

Next, we describe the di�erent issues related to the discretization of the
expression (13) of the model points risk functional, which is evaluated a large
number of times in the global optimization numerical method.

First, note that the involved expectation is computed by Monte Carlo simu-
lation, so that each simulation requires the computation of the evolution of for-
ward LIBOR rates according to the previously described LIBOR Market model.
Following the ideas in [1], taking logarithmic rates and using Ito lemma in (1),
the forward rate dynamics satis�es the following equation with a deterministic
di�usion coe�cient

d lnFn(t) = σn(t)

n∑
k=1

%nkτkσk(t)Fk(t)

1 + Fk(t)τk
dt+ σn(t)dWn(t). (19)

Next, applying the classical Euler-Maruyama scheme for the time discretization
of (19), we get

ln F̂n(t+ ∆t) = ln F̂n(t) + σn(t)

n∑
k=1

ρnkδkσk(t)F̂k(t)

1 + δkF̂k(t)
∆t

− σn(t)2

2
∆t+ σn(t)(Ŵn(t+ ∆t)− Ŵn(t)),

(20)

for n = 1, . . . , N , where F̂n(t) is the approximation to Fn(t) and Ŵn(t+ ∆t)−
Ŵn(t) ≡

√
∆tN (0, 1) simulates the increment of the multidimensional Wiener

process dWn(t) at time t. The discretization is performed over a uniform mesh
de�ned by the mesh nodes tq = q∆t, for q = 0, . . . , Nt where ∆t denotes the
constant time step in the Euler scheme, which exhibits strong convergence of
order one in ∆t.

Next, we describe the discretization of expression (13) for the functional
R(w|v). More precisely, if we denote by R̂(w|v) its approximation, then

R̂(w|v) =
1

Np

Np∑
p=1

(
1

Nt

Nt∑
q=1

||Rpq(w|v)||2(1− tq)

)

=
1

Np

Np∑
p=1

(
1

Nt

Nt∑
q=1

Rpq(w|v) · C ·Rt
pq(w|v)(1− tq)

)
,

where C denotes the correlation matrix, Nt is number of time steps, Np the
number of simulations and Rpq is de�ned by:
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Rpq(w|v) =

N∑
n=1

(R∗pq(v)−R∗∗pq(w))νpq(Tn),

with the vector νpq(Tn) given by

νpq(Tn) = εpn(tq)B̃p
n(tq) = −B̃p

n(tq)

n∑
k=1

τk
1 + τkFn(tq)

Σk(tq),

where index p is associated to a particular simulation of forward LIBOR rates
and discounted bond price, index q is related to time tq and index n is related
to maturity Tn in the tenor structure. Moreover, we have used the notation

R∗pq(v) =
∑
i,j

vijST (xi, Tn)(Tn − yj),

R∗∗pq(w) =
∑
i,j

wijST (xi, Tn)(Tn − yj),

where vij denotes the number of contracts with age xi and maturity yj with
nominal one in the original portfolio and wij denotes the analogous in the model
points portfolio.

Concerning the force of mortality, we consider the Gompertz type law mod-
elling with constant parameters, i.e. µ(x) = a exp(bx), where we will take
a = 0.0003 and b = 0.06.

The computational cost associated to the evaluation of the discretized risk
functional is actually high: note that we use a Monte Carlo numerical scheme
with each path involving the simulation of forward LIBOR rates and additionally
we have a computationally intensive loop in the policies corresponding to the
original portfolio. Also note that the optimization algorithm essentially requires
the repeated evaluation of the risk funcional (cost function), which therefore
needs to be calculated in a very e�cient way.

For this purpose, we have carried out the parallel implementation of the
cost function, by using a multi CPU setting and the OpenMP API. Moreover,
a parallel random number generation algorithm for multi CPU architectures
has been used for parallelizing Monte Carlo simulation. More precisely, in our
case we have used the well known Tina's Random Number Generator library
(TRNG).

We would like to emphasize that the whole code has been implemented
from scratch in C++, including the LIBOR rates simulator and the Monte
Carlo technique for computing the risk functional. The psedocode for the risk
functional discretization is shown in Algorithm 1.
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Algorithm 1: Cost function. Pseudocode.
Data: ∆t, Nt, Euler time step size and number of time steps
Data: ti, i = 1, . . . , Nt, Times for Euler Squeme
Data: Np, Number of Monte Carlo paths
Data: M, Number of tenors
Data: Tk, k = 0, . . . ,M, Tenor structure
Data: Fk(0), k = 0, . . . ,M, Forward initial rates
Data: Initial volatilities, σk(0)
Data: Policies portfolio:
Data: numP , Number of polices in the portfolio
Data: Np(i), Ap(i), Ep(i), i = 1, . . . , numP , number of contracts, age and expiration of each police of

the portfolio
Data: Structure of model points portfolio:
Data: numMP , Number of model points
Data: Nmp(i), Amp(i), Emp(i), i = 1, . . . , numMP , number of contracts, age and expiration of each

police of the model points portfolio
Data: a, b, data for survival model
Data: β, data for correlations

1 S(age, T, t): Force of mortatity function L, build correlation matrix

2 L = CCT , Perform Cholesky decomposition
3 /* Parallel loop */
4 for j = 1 to NPaths do

5 for i = 1 to Nt − 1 do

/* Compute vector for the Brownian motions */

6 for k = 1 to M do

7 Generate the Brownian step ∆Bk(ti)

8 ∆W (ti) = C∆B(ti)

/* Compute vector of Forward rates */

9 for k = 1 to M do

10 Simulate [Fk(ti) using log-Euler scheme (20)

11 ln Fk(ti) = ln Fk(ti−1) + µk(ti)(ti − ti−1) + σk(ti)Fk(ti)∆Wk(ti)

12 where µk(ti)

13 µk(ti, ωj) = σk(ti)Fk(ti)
∑k
h=1

%khτhσh(t)Fh(ti)
1+Fh(ti)τh

.

14 for i = 1 to Nt − 1 do

15 p(ti, k) = 1
16 for k = 1 to M do

17 Compute the discounted bond prices

18 B(ti, k) = B(ti, k) ·
1

1 + Fk(ti)τk
19 Compute the di�usive component of the discounted bond price

νij(Tk) =
τk

1 + τkFk(ti)
σk(ti)Fk(ti)

20 Rj = 0
21 for k = 1 to M do

22 sump = 0

23 for l = 1 to NumP do

24 sump+ = NP l[l] ∗ S(AP [l], Tk, ti) ∗ (Tk <= Ep[l])

25 summp = 0

26 for l = 1 to NMP do

27 summp+ = NMP [l] ∗ S(AMP [l], Tk, ti)(T [k] <= EMP [l])

28 Rj = Rj + (sump − summp) ∗ (−B(ti, k) ∗ νij(Tk))

29 R+ = Rj ∗ L ∗ Rj ∗ (1 − ti)

30 R = (1/NPaths) ∗ (1/Nt) ∗ R

5.2. Global optimization algorithms

Obtaining the model points portfolio results to be a very di�cult problem,
as it involves solving a global optimization problem in high dimension. More
precisely, the dimension of the searching space is given by the number of policies
in the model points portfolio, which is equal to I × J in our case.

For solving global optimization problems, stochastic algorithms are usually
required. They have the advantage that they can deal with complex problems,
discarding local optima and avoiding getting stuck in this local solutions. How-
ever, their main disadvantage is associated to their slow convergence, due to
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their stochastic nature. One example of these kind of algorithms is Simulated
Annealing (SA), see [8] and references therein for details. On the other hand,
deterministic local optimization algorithms are faster, their disadvantage being
that they can't scape from local minima. Some examples of these local algo-
rithms are Pattern Search or gradient based methods like NCG, BFGS, L-BFGS
[13] or L-BFGS-B [2].

One possible technique to obtain faster global optimization algorithms comes
from mixing both kinds of algorithms, thus obtaining the so called hybrid algo-
rithms, which can bene�t from the global convergence properties of the stochas-
tic ones and from the speed of convergence of the local optimization algorithms
(see Figure 1, for a sketch of the behavior of hybrid algorithms). One example
of hybrid algorithms is the Basin Hopping (BH) algorithm, see [14] and [7], as
well as references therein. Basically, in BH algorithm a Simulated Annealing is
used for sampling the searching space by randomly generating neighbors, and
local gradient algorithms are applied to capture the minima starting from the
generated points by the stochastic sampler.

Figure 1: Sketch of Basin Hopping algorithm.

The pseudocode of the Basin Hopping algorithm is shown in Algorithm 2.
The whole optimization routines have been implemented from scratch in C++,
following the previous works [8, 7].

6. Numerical examples

In this section we present two tests to validate the proposed model points
selection technique, and an application to a real world scenario, with unknown
solution.

First, we recall that the cost function is stochastic and its computation
requires a Monte Carlo simulation technique. In this respect, all the tests in
this section have been performed by using 1000 paths for the Monte Carlo
simulation in the computation of the cost function.

In this section we also show the comparison between the global SA method
and the hybrid BH with L-BFGS-B as local optimizer, as the alternatives to solve
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Algorithm 2: Basin Hopping method, pseudocode.

1 y = sampled from a uniform random distribution in D;
2 Number of successive rejections: j = 0;
3 Iteration number: k = 0;
4 Initial position: x0 = x∗ = LS(y);
5 while (j < J) or (T < Tmin) do
6 for i=0:N do

7 yk = random uniform in B(xk, rk);
8 u = random uniform in [0, 1];
9 ∆ = L(yk)− L(x∗);
10 if u < exp(−∆/kBT ) then
11 x∗ = xk+1 = LS(yk);
12 j = 0;

13 else

14 j = j + 1;

15 k = k + 1;

16 Update radius rk ;
17 T = ρ · T ;

the problem. More precisely, we will present some graphs with the evolution
of the value of the cost function with respect to the the number of evaluations.
Note that the number of evaluation is closely related to the computational cost.

Concerning the tenor structure of the LIBOR model, we consider 100 tenors,
with maturities ranging from 1 to 100 and initial rates are F1(0) = 0.01, F2(0) =
0.02, F3(0) = 0.03, F4(0) = 0.04 and Fn(0) = 0.05, for n ≥ 5.

All tests have been performed in a server with 16 GB of RAM, and 16 CPU
cores (two Intel Xeon E5-2620 v4 at 2.10GHz).

6.1. Performance of the parallel implementation of risk functional evaluation

As we mentioned before, the computational cost of the proposed optimiza-
tion algorithms is closely related to the cost of evaluation of the risk functional,
which is performed a large number of times during the optimization procedure.
Therefore, as a previous step to the presentation of numerical examples, we
show the performance of the multi-CPU implementation of the model points
risk functional calculation. For this purpose, we consider from 100 to 10000
policies in the original portfolio and 45 policies in the model points portfolio.
Moreover, we consider 1000 paths for the Monte Carlo simulation.

Figure 2 and Table 1 show the obtained speed up for the parallel implemen-
tation of the risk functional with di�erent numbers of policies in the original
portfolio and di�erent number of cores being used. As it is illustrated by both,
it occurs that the speed-up gets closer to the number of used cores when the
number of policies increases. Therefore, parallelization results more interesting
and e�cient for large enough portfolios.
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N. policies N. cores Time (seconds) Speedup

10000

1 943.25 -
2 517.50 1.82
4 249.21 3.79
8 130.70 7.21
16 688.5 13.70

5000

1 518.81 -
2 270.87 1.91
4 137.97 3.76
8 70.22 7.38
16 417.32 13.43

1000

1 102.65 -
2 53.28 1.92
4 27.73 3.70
8 14.99 6.85
16 8.36 12.28

500

1 54.56 -
2 28.63 1.90
4 15.06 3.62
8 8.63 6.32
16 5.15 10.58

100

1 17.351 -
2 9.21 1.88
4 4.94 3.51
8 2.67 6.48
16 1.88 9.21

Table 1: Parallel implementation of the risk functional evaluation. Time and speedups.
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Figure 2: Speedups of parallel implementation vs. number of cores for di�erent numbers of
policies in the original portfolio.

6.2. Example 1: Selection of one model point

In this example we aim to represent an original portfolio with a model points
portfolio with one single model point.

More precisely, the original portfolio contains 10 policies, the main data of
which are shown in Table 2. The model points portfolio consists in just one single
model point with age equal to 42 and maturity equal to 28 years. Therefore,
the objective is to determine the number of contracts in this model point that
minimizes the corresponding risk functional.

Therefore, in this case the cost function (risk funtional) is given by a one
dimensional function. If we evaluate the cost function for di�erent number of
contracts, we obtain the expected parabolic convex function, so that the global
minimum can be graphically checked (see Figure 3). Note that in this example
we do not apply an optimization method, but just evaluate the risk functional for
the di�erent number of contracts and identify the particular number of contracts
(≈ 1315000) that minimizes the risk funcional with (x1, y1) = (42, 28).

6.3. Example 2: Repeated policies classi�cation

In this second example we validate the proposed technique for a problem
with known solution. Thus, we compute the model points portfolio by using the
two previouosly discussed global optimization algorithms: the pure global SA
algorithm and the hybrid BH algorithm, so the we can compare the performance
of both algorithms for the hard problem we pose.

In this problem, for building the original portfolio we start from the small
portfolio of 10 policies in Example 1 (see Table 2), and we build up the large
original portfolio by repeating each policy 1000 times, so that we end up with
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Age Maturity Number of contracts
20.0 50.0 50000
25.0 45.0 100000.0
30.0 40.0 150000.0
35.0 35.0 200000.0
40.0 30.0 250000.0
45.0 25.0 300000.0
50.0 20.0 350000.0
55.0 15.0 400000.0
60.0 10.0 450000.0
65.0 5.0 500000.0

Table 2: Original portfolio for Example 1.
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Figure 3: Graph of the one dimensional risk functional in Example 1.
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an original portfolio containing 10000 policies. Although they are repeated
(actually, there are only 10 types of policies), each policy is understood as a
di�erent individual one.

Concerning the model points portfolio, we try to represent the previously
described original portfolio with a 10 model points portfolio with the same
structure (ages and maturities) as the one in Table 2, so that the problem
consists of �nding the number of contracts in the model points for that model
points portfolio that better represents the original portfolio with respect to the
risk functional.

Clearly, the analytical solution consists of multiplying the number of con-
tracts in Table 2 by 1000. Moreover, by choosing the model points portfolio in
this way the corresponding value of cost function is equal to zero.

Age Maturity Number of contracts
20.0 50.0 50000000
25.0 45.0 100000000
30.0 40.0 150000000
35.0 35.0 200000000
40.0 30.0 250000000
45.0 25.0 300000000
50.0 20.0 350000000
55.0 15.0 400000000
60.0 10.0 450000000
65.0 5.0 500000000

Table 3: Obtained solution in Example 2 with BH.

As we can see in Figure 4 for the BH method with L-BFGS, the method
reaches the very small value 1.75×10−08 of the cost function, the exact solution
being equal to zero. Moreover, in Table 3 the obtained values for the number of
contracts of the model points portfolio are shown. We note that these value are
rounded to the eighth decimal digit, thus matching those ones corresponding
to the exact solution. These roundings explain the small di�erence between
1.75×10−08 and zero in the cost function. On the other hand, the computational
time was 87.35 hours (about 3.63 days) using L-BFGS, when using 16 cores (and
32 threads).

Next, in Figure 5 we show the convergence of the SA algorithm for solving
the optimization problem. In this case, the computational time was 839.35 hours
(about 35 days). The obtained solution is the same as with BH algorithm.

By using this example with analytical solution, we have checked that the
proposed technique is able to classify repeated policies in their corresponding
buckets, which is a desirable property of the risk function.

Moreover, we would like to emphasize that in the optimization algorithms
we have imposed very hard stopping criteria in the involved numerical methods
to guarantee a very small error with respect to the analytical solution (high
accuracy). This leads to high computational times, even though we use some
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Figure 4: Convergence of the BH algorithm for Example 2.
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Figure 5: Convergence of the SA algorithm for Example 2.

parallel computing tools. Also, in view of computational times we note that BH
results to be more e�cient than SA.

6.4. Example 3: Real scenario

In this example we present a realistic synthetic example. More precisely, in
this case the original portfolio consists of 10000 di�erent policies, and we want
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to represent it with a portfolio of 45 model points, which is given by a grid of
9 ages and 5 maturities. Ages will vary from 30 to 70 with step 5 years and
maturities range from 5 to 25 with step 5 years, thus accounting for a total of
45 model points.
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Figure 6: Convergence of the BH algorithm for Example 3.

This is a much more di�cult test than the analytical one in Example 2.
The required total computing time by the BH hybrid optimization algorithm,
with L-BFGS-B as local minimizer, was 136.43 hours when using 16 processors
for the parallel evaluation of the risk functional. The obtained �nal value of
the model points risk function is 0.175927. Moreover, the computed number of
contracts in the model points portfolio are shown in Table 4 and Figure 7.

The global property of the hybrid algorithm is of great importance for this
test, as several iterations of the global optimization algorithm were needed to
reach the minimum, thus avoiding to get stuck to a local minimum as it may
happen with a pure local optimization method. Also the convergence speed and
accuracy of the L-BFGS-B local optimizer results to be a key point, as the SA
pure global algorithm was not able to converge for this realistic example.

7. Conclusions

In this paper, we mainly propose a methodology to address the problem of
selection of a model points portfolio for a given initial portfolio of life insur-
ance policies. The methodology requires to overcome both mathematical and
computational challenges.

First, the selection is based on the de�nition of an appropriate market risk
funtional to evaluate how the model points portfolio represents the initial one.
In this respect, a realistic appropriate market risk functional has been proposed,
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Figure 7: Solution for Example 3.

which is mainly based on the LIBOR market model for the evolution of forward
rates.

Secondly, once the risk functional has been chosen, obtaining the model
points portfolio involves the solution of a high dimensional global optimization
problem, so that the numerical optimization methods require a very large num-
ber of risk functional evaluations. The risk function has been discretized by
using a Monte Carlo. In order to speed up the high computational cost as-
sociated to each evaluation, it has been parallelized in a multi CPUs setting
using OpenMP. Concerning the choice of the optimization methods, the hy-
brid Basin Hopping optimization algorithm, which combines the advantages of
mixing stochastic global optimization algorithms with gradient local optimizers,
has been proposed and compared with an alternative purely global optimization
technique. The accuracy and performance of the algorithm have been analyzed
with several numerical examples, both in cases with known solution and also in
a real example without analytical solutions. The results show that the hybrid
global optimization algorithm more suitable for selecting the model portfolio.

Although the proposed methodology seems successful from the mathematical
and computational perspectives, future work to improve both aspects can be
addressed and it is under consideration by the authors.

From the computational side, in order to reduce the computational time,
the implementation in (multi-)GPUs of the functional evaluation and/or the
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Maturities
5 10 15 20 25

A
g
es

30 0.0490344 10363.8 8678.28 10654 10560.2
35 0.363568 0.386776 9859.99 8118.85 42.143
40 12843.9 8892.82 984.418 523.38 208.743
45 6318.73 5653.26 5108.62 3867.53 84.3039
50 6970.11 6976.25 6874.87 1062.52 280.726
55 132.469 10.4804 543.098 219.955 889.387
60 4057.54 38.8013 2917.22 151.168 51.1771
65 3991.46 234.856 1120.47 0.996919 0.32282
70 7923.19 63.4409 797.372 859.543 0.203422

Table 4: Obtained solution with BH in Example 3. The number of contracts is divided by 104

global optimization algorithm is under consideration by the authors. Note that
this issue requires the migration of the code to CUDA and a very e�cient
implementation to get advantage of the GPUs architectures. In this respect,
some authors of this article have already developed implementations in GPUs
for ALM in insurance problems in [6].

From the �nancial and mathematical modelling side, the problem of the op-
timal model points selection for life insurance portfolios has been addressed by
considering the changes in interest rates over time as the main source risk. This
means that no stochastic �uctuation a�ecting the time evolution of the mortality
rate has been taken into account, and a deterministic survival trend over time
for any cohorts is considered. However, evidences of the stochastic behaviour in
the trend of the life expectancy can be found in [3] and the references therein.
In this respect, one may refer either to mortality or longevity risk to account for
the possibility faced by the insurer to su�er losses due to unexpected changes
in the long-terms life trend displayed by the policy owners. As a direct conse-
quence, a more sophisticated approach for the model points selection should be
obtained by considering the stochastic time evolution of both the interest rate
term structure and the mortality rate. In this context, the dependence between
mortality risk and interest rate risk cover a central issue. A �rst attempt to
model this dependence is carried out in [12].
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