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Abstract

Let E be a space of observables in a sequence of trials ξn and de�ne mn to
be the empirical distributions of the outcomes. We discuss the almost sure
convergence of the sequence mn in terms of the ψ-weak topology of measures,
when the sequence ξn is assumed to be stationary. In this respect, the limit
variable is naturally described as a certain canonical conditional distribution.
Then, given some functional τ de�ned on a space of laws, the consistency of
the estimators τ(mn) is investigated. Moreover, a result on the asymptotic
stability of the distribution of τ(mn) w.r.t. certain transformations of the
data is given.
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1. Introduction

Let E be a space in which any element encodes an observable in a se-
quence of trials ξ1, ξ2, ..., and let EN be the entire space of the sequences of
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outcomes, endowed with a background probability measure P. In particu-
lar, throughout this paper, we assume that the observations ξ1, ξ2, ... form a
stationary sequence with respect to the measure P.

For any n ≥ 1, let mn , n−1
∑

i≤n δξi be the empirical distribution gen-
erated by the observations. Given the entire class M1(E) of laws on E,
endowed with some proper measurable structure, each empirical mean mn

may be always understood as a random element of M1(E).
This paper is motivated by the study of the asymptotic stability of the

random sequence τn , τ(mn), n ≥ 1, when the variables ξn encode the
historical data of a certain �nancial risk factor and τ : M1(E) → T is a
certain statistic assessing the downside risk of the related exposure. Indeed,
the study of the asymptotic behaviour of the estimators τn is crucial to gauge
the risk properly, see Cont et al. [3], Föllmer and Weber [8] and Krätschmer
et al. [18, 19].

In this respect, a key aspect is whether we have consistency of the risk
estimators τn, i.e. whether such a sequence admits a proper limit in some
stochastic sense.

If the variables ξn are independent and with common distribution µ,
Varadarajan theorem guarantees the P-almost sure convergence of the em-
pirical process mn to the law µ in the weak topology, and the consistency
of the estimators τn is directly obtained from the continuity property of the
statistic τ .

Nevertheless, as highlighted by Cont et al. [3] and Kou et al. [17] some
commonly used risk functionals, more precisely the functionals associated to
the entire class of law-invariant convex risk measures, fail to be continuous
with respect to the weak topology of measures. Brie�y, the reason lies behind
the fact that the weak topology is not sensitive enough to the tail behaviour
of the distributions, which, by the way, is the main issue in risk analysis.

An approach to overcome this lack of sensitive has been proposed in
Krätschmer et al. [18, 19] and Zähle [25, 26]. Its main ingredient is to
introduce a proper re�nement of the topological structure, �ne enough to
control the distributions of the tails, via the subspaces Mψ

1 (E) of M1(E)
de�ned in terms of gauge functions ψ and the associated ψ-weak topologies.

Theorem 1 of Section 4 describes the P-almost sure convergence of the
empirical process mn, under the ψ-weak topology. In particular, the limit
variable is naturally described as the random measure obtained as the con-
ditional distribution of ξ1 given the shift-invariant σ-algebra associated to
the variables ξn. We point out that in the speci�c case when in addition the
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variables ξn form an ergodic sequence, the consistency result as described in
our Corollary 1 has been developed by Krätschmer et al. [19].

When assessing the downside risk associated to some �nancial exposure,
besides consistency, robustness is a desirable property of asymptotic stability.
Following Hampel, an estimation is said to be robust if small changes of the
law related to the outcomes ξn only result in small changes of the distribution
characterizing the estimators τn. While the notion of qualitative robustness
has been classically developed, cf. [4, 11, 12, 13, 21], by means of the weak
topology of measures, Krätschmer et al. [18, 19] and Zähle [25, 26], provide
a similar version that applies to the ψ-weak topology as the basic topological
background.

The main goal of Section 5 is to develop a criterion for the asymptotic
stability of the estimators τn, which turns out to be related to the notion
of qulitative robustness, by exploiting the consistency result discussed in
Corollary 1. With this aim in mind, we formulate there a notion of asymptotic
stability in terms of the modulus of continuity of the statistic τ . Such a
formulation naturally arises when dealing with random measures, and hence
in the particular case of the canonical conditional distribution de�ned by the
variables ξn, if stationarity holds.

The paper is organized as follows. In Section 2 we describe the topological
structure of the workspace that we consider throughout the paper. In Section
3 we present some useful measure theoretical results. In section 4 we propose
a criterion for consistency that is exploited in Section 5 in order to assess the
asymptotic stability of the estimators τn.

2. Background

Let E be a Polish space and let E be its Borel σ-algebra.
We denote by M1(E) the family of Borel probability measures on E and

by Cb(E) the Banach space of bounded continuous functions de�ned on E,
endowed with the supremum norm.

Here and in the sequel we use the notation

µf ,
∫
E

f(x)µ(dx),

wherever the measure µ ∈ M1(E) and the Borel function f are such that∫
E
|f(x)|µ(dx) < +∞.
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The weak topology σ(M1(E),Cb(E)) is the coarsest topology on M1(E)
that renders continuous each map µ ∈ M1(E) 7→ µf , when f runs over
Cb(E).

Since E is Polish, the space M1(E) endowed with the weak topology is
metrized as a complete and separable metric space by means of the Prohorov
distance

π(µ, ν) , inf{ε > 0 : µ(B) ≤ ν(Bε) + ε, for any B ∈ E },
for any µ, ν ∈M1(E),

(1)

where Bε , {x ∈ E : infy∈B d(y, x) < ε} stands for the ε-hull of B ∈ E , and
d denotes a consistent distance i.e. a metric on E that is consistent with its
topological structure.

2.1. Bounded Lipschitz functions BL(E)

Let BL(E) denote the linear space of Lipschitz bounded functions on E.
For a function f ∈ BL(E) we de�ne

‖f‖BL(E) , ‖f‖∞ + ‖f‖L(E)

where ‖f‖L(E) is given by ‖f‖L(E) , supx 6=y |f(x)−f(y)|/d(x, y), where d is a
consistent metric on E. The space BL(E) endowed with the norm ‖ · ‖BL(E)

is a Banach space, (cf. [5], Proposition 11.2.1).

The weak topology onM1(E) may be alternatively generated by means of
the space BL(E) of bounded Lipschitz functions on E, instead of the space
Cb(E) of bounded continuous functions: the weak topology is also the coarsest
topology which renders continuous each of the mappings µ ∈M1(E) 7→ µf ,
when f runs over BL(E).

We recall that

β(µ, ν) , sup{|(µ− ν)f | : ‖f‖BL(E) ≤ 1}, for any µ, ν ∈Mψ
1 (E), (2)

de�nes a metric on M1(E) equivalent to the Prohorov metric (1). Hence,
given a sequence µ0, µ1, ... in M1(E), one has that µn → µ0 in the weak
topology if and only if β(µn, µ0)→ 0, as n→ +∞, (cf. [5] Theorem 11.3.3).
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Remark 1. Observe that the distance β as well as the Prohorov distance π
depend on the distance d. Besides, if d′ is a metric on E equivalent to d,
then, with obvious notation, the corresponding distance π′ is equivalent to π
and the same for β′ and β. This allows us to consider the consistent metric
d that turns out to be more useful for our purposes. In particular, among all
the distances consistent with the topology on E, there is one that is totally
bounded, which will be convenient to use later on; see, e.g., Theorem 2.8.2 in
[5]. On the other hand, note that the speci�c choice of the consistent metric
d does not a�ect the separability of E.

Separability issues. We recall that the space Cb(E) endowed with the supre-
mum norm ‖ · ‖∞ is, in general, not separable. Likewise, the space BL(E)
is, in general, not separable for the topology induced by the norm ‖ · ‖BL(E).

Let us de�ne BL1(E) to be the unit ball in BL(E), i.e. the set of func-
tions f ∈ BL(E) such that ‖f‖BL(E) ≤ 1. Recall that the family BL1(E) of
BL(E) depends on the actual distance d on E used in the de�nition of the
norm ‖ · ‖BL(E)

The following proposition will play a relevant role later on in this paper.

Proposition 1. If the consistent distance d on E is totally bounded, then

the unit ball BL1(E) is separable for the supremum norm ‖ · ‖∞.

For the proof of Proposition 1 we shall use the following particular case.

Lemma 1. Assume further that the space E is compact, then BL1(E) is

separable for the supremum norm ‖ · ‖∞.

Note that the consistent metric d in Proposition 1 might fail to be com-
plete in general, since completeness is not a topological invariant. In the
special case, when d is indeed complete, then E turns out to be compact (cf.
[5], Theorem 2.3.1), and Proposition 1 boils down to Lemma 1.

Proof of Lemma 1. The result follows directly from Ascoli-Arzelá theorem,
(cf. [5], Theorem 2.4.7). Indeed, since the family BL1(E) is uniformly
bounded and equicontinuous and E is compact, then the family BL1(E) is
compact with respect to the ‖·‖∞-topology, and, consequently, separable.

The following proof of Proposition 1 is modelled upon ideas contained in
the proof of Thereom 11.4.1 in [5].
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Proof of Proposition 1. Let Ē be the completion of E with respect to the
metric d, and de�ne BL1(Ē) to be the unit ball in BL(Ē) de�ned by the
norm ‖ · ‖BL(Ē).

Fix g ∈ BL1(E) and denote by ḡ the unique extension of g (see, e.g.
Proposition 11.2.3 in [5]) de�ned on the entire Ē such that ‖ḡ‖BL(Ē) =
‖g‖BL(E) and hence so that ḡ ∈ BL1(Ē).

Note that Ē is compact, since E is assumed to be totally bounded, (cf. [5],
Theorem 2.3.1). Lemma 1 gives us a subset N of BL1(Ē) which is countable
and dense in BL1(Ē) with respect to the supremum norm ‖ · ‖∞.

Thus, given g ∈ BL1(E), for any ε > 0 one can �nd f ∈ N so that
‖ḡ − f‖∞ ≤ ε. On the other hand, letting f |E be the restriction of f to the
domain E, one has ‖g − f |E‖∞ ≤ ‖ḡ − f‖∞ ≤ ε. Hence, the family N|E of
the functions in N restricted to E provides a dense and countable subset of
BL1(E) in the norm ‖ · ‖∞.

2.2. Gauges ψ.

Let ψ be a continuous function on E, satisfying ψ ≥ 1 everywhere on E.
Throughout the paper, ψ will play the role of gauge function. In particular,
following Follmer and Schied, see [7], and also [18, 19], we associate to such
ψ the space of functions Cψ(E) given by

Cψ(E) , {f ∈ C(E) : ‖f/ψ‖∞ <∞} ,

and the space of probability measures Mψ
1 (E) de�ned by

Mψ
1 (E) , {µ ∈M1(E) : µψ < +∞} .

Observe that Cb(E) ⊆ Cψ(E) and that Mψ
1 (E) ⊆M1(E).

De�nition 1 (ψ-weak topology). The ψ-weak topology σ(Mψ
1 (E),Cψ(E))

is the coarsest topology on Mψ
1 (E) that renders continuous the maps µ ∈

Mψ
1 (E) 7→ µf , varying f ∈ Cψ(E).

Besides the ψ-weak topology, in Mψ
1 (E) we need to consider also the

relative weak topology induced on Mψ
1 (E) as a subspace of M1(E), endowed

with the weak topology as de�ned above. This relative weak topology is
actually σ(Mψ

1 (E),Cb(E)), the coarsest topology so that for each f ∈ Cb(E),
the mapping µ ∈ Mψ

1 (E) 7→ µf is continuous, see, e.g., Lemma 2.53 in [1].
The ψ-weak topology is in general �ner than the relative weak topology.
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If ψ ≡ 1 or simply if ψ is bounded above, then Cb(E) = Cψ(E), Mψ
1 (E) =

M1(E) and the ψ-weak topology and the relative weak topology coincide.

We introduce now a distance dψ on Mψ
1 (E) by

dψ(µ, ν) , π(µ, ν) + |(µ− ν)ψ|, for any µ, ν ∈Mψ
1 (E). (3)

The following Proposition combines the results of [7] and [18].

Proposition 2. Mψ
1 (E) endowed with the ψ-weak topology is a Polish space

and its topology is generated by the distance dψ.

Mψ
1 (E) endowed with the relative weak topology is separable.

Proof. Corollary A.45 of [7] gives us that Mψ
1 (E) endowed with the ψ-weak

topology is Polish, in particular, metrizable. Now, Lemma 3.4 in [18], gives us
that a sequence converges ψ-weakly if and only if it converges in the distance
dψ.

If (ej)j≥1 is a sequence dense in E, then the family of convex combinations

(with rational weights) of δej is contained inMψ
1 (E) and it is dense inM1(E),

with respect to Prohorov distance. Hence, the space Mψ
1 (E) is separable

when endowed with the relative weak topology.

Remark 2. Note that, given a sequence µ0, µ1, ... in Mψ
1 (E), then µn → µ0

in the ψ-weak topology, as n → +∞, if and only if µn → µ0 in the weak
topology and µnψ → µ0ψ, as n→ +∞.

The measurable structure of Mψ
1 (E). We denote by M the Borel σ-algebra

on M1(E) generated by the weak topology and by M ψ the Borel σ-algebra
on Mψ

1 (E) generated by the ψ-weak topology.
Next, we collect some properties of M and M ψ. We recall that M has

the following characterization.

Lemma 2. The σ-algebra M is generated by the projections πB : µ 7→ µ(B),
de�ned for µ ∈M1(E), letting B vary in E .

Proof. See, e.g., Proposition 2.2.2. in [9].
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Lemma 3. Let H be a family of functions de�ned on a set H and taking

values in a measurable space (G,G ). Let φ be a H-valued map de�ned on

some set H0, then φ
−1(σ(H)) = σ(H◦φ) on H0, where H◦φ , {h◦φ : h ∈ H}.

Proof. First of all, note that φ−1(σ(H)) is a σ-algebra on H0, since the map
φ−1 preserves all the set operations. Thus, the inclusion σ(H◦φ) ⊆ φ−1(σ(H))
is immediate, since h ◦ φ is φ−1(σ(H))-measurable for any h ∈ H.

Let now H0 be a σ-algebra on H0 with respect to which h ◦φ is (H0,G )-
measurable, for any h ∈ H. Clearly φ−1(σ(H)) ⊆ H0. Thus, the proof
concludes by considering H0 = σ(H ◦ φ).

The next lemma states that the relative weak topology and the ψ-weak
topology generate the same Borel σ-algebra on Mψ

1 (E).

Lemma 4. The σ-algebra M ψ is generated by the relative weak topology

σ(Mψ
1 (E),Cb(E)).

Recall that a σ-algebra is said to be (i) countably generated if it is gener-
ated by a countable family of sets and (ii) countably separated if it admits an
a countable family of sets separating points. Moreover, a measurable space
is said to be standard if it is Borel-isomorphic to a Polish space.

Proof of Lemma 4. Let us de�ne Bψ to be the Borel σ-algebra associated to
the relative weak topology σ(Mψ

1 (E),Cb(E)). Since the ψ-weak topology is
�ner than the weak topology on Mψ

1 (E), one has Bψ ⊆M ψ.
On the other hand, Proposition 2 gives us that Mψ

1 (E) is separable when
endowed with the relative weak topology. As a result, the σ-algebra Bψ is
countably generated and countably separated. Indeed, any countable base
Bψ of open sets in σ(Mψ

1 (E),Cb(E)) generates the σ-algebra Bψ and sepa-
rates points, (cf. [2], �6.5).

Finally, Proposition 2 again implies that the space (Mψ
1 (E),M ψ) is stan-

dard, and thus, the σ-algebra M ψ coincides with σ(Bψ), thanks to Theorem
3.3 in [20].

The Borel σ-algebra M ψ admits a characterization in terms of the pro-
jections πB analogous to that of Lemma 2 for M . This is the content of the
next proposition.

Proposition 3. The Borel σ-algebra M ψ is generated by the projections

πB : µ 7→ µ(B), de�ned for µ ∈Mψ
1 (E), letting B vary in E .
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Proof. Let φ : Mψ
1 (E) ↪→ M1(E) be the inclusion of Mψ

1 (E) into M1(E)
and de�ne H to be the family consisting of the projection maps πB : µ ∈
M1(E) → µ(B), letting B vary in E . The family H ◦ φ , {πB ◦ φ : B ∈ E }
consists of the projections de�ned on Mψ

1 (E).
Let us de�ne Bψ to be the Borel σ-algebra generated by the restriction

σ(Mψ
1 (E),Cb(E)) of the weak topology toMψ

1 (E). Equality Bψ = φ−1(σ(H))
holds true, since σ(H) = M due to Lemma 2 and Bψ = φ−1(M ). Hence,
applying Lemma 3, one deduces that Bψ = σ(H ◦ φ). The stated result now
follows from Lemma 4.

3. Setup

We now introduce our reference probability space (Ω,F ,P) for our asymp-
totic stability results.

We let Ω denote the set Ω = EN of all the sequences ω = (ω1, ω2, ...)
of elements of a Polish space E. The projections ξ1, ξ2, ... are the mappings
ω 7→ ξn(ω) , ωn, for ω ∈ Ω and n ≥ 1.

We let F denote the σ-algebra in Ω generated by the projections ξ1, ξ2, ....
This family F is also the Borel σ-algebra associated to the product topology
in EN; it also coincides, since E is separable, with the product σ-algebra E N,
(cf. [23], Theorem 1.10).

We let P be a probability measure de�ned on (Ω,F ), so that (Ω,F ,P)
is a complete probability space.
Random measures. By a random measure χ on (E,E ) with support inMψ

1 (E)
we understand a probability kernel

(ω,B) ∈ Ω× E 7→ χ(ω,B) ∈ [0, 1] ,

such that

(i) the assignment B ∈ E 7→ χ(ω,B) de�nes a probability measure in
Mψ

1 (E), for each �xed ω ∈ Ω,

(ii) the mapping ω ∈ Ω 7→ χ(ω,B) is F -measurable, for each �xed B ∈ E .

Besides, Proposition 3 allows to understand χ as a random variable on
(Ω,F ,P) and taking values in (Mψ

1 (E),M ψ).
We shall denote by L (χ) the distribution induced by χ on (Mψ

1 (E),M ψ)
as a pullback in the usual way:

L (χ)(M) = P ◦ χ−1(M), for any M ∈M ψ.
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Empirical process. The empirical process associated to the projections ξ is
the sequence m1,m2, ... of random measures de�ned, for each n ≥ 1, by

mn(ω,B) ,
1

n

n∑
i=1

δξi(ω)(B), for any ω ∈ Ω and any B ∈ E . (4)

Moreover, we say that the empirical process m1,m2, ... is directed by the
variables ξ1, ξ2, ... We shall always understand each mn as a random variable
de�ned on (Ω,F ,P) and with values in (Mψ

1 (E),M ψ).
Statistics and estimators. Let T be a further Polish space endowed with
its Borel σ-algebra T and with a metric dT which induces its topological
structure.

Any (M ψ,T )-measurable functional τ : Mψ
1 (E)→ T is termed a statistic

on Mψ
1 (E).

The sequence of random variables τ1, τ2, .. from (Ω,F ,P) into (T,T )
obtained by setting, for each n ≥ 1,

τn , τ(mn),

is called the sequence of estimators induced by τ .
The statistic τ : Mψ

1 (E)→ T is said to be ψ-continuous if it is continuous
with respect to the ψ-weak topology on Mψ

1 (E) and the topology de�ned on
T . Besides, τ is said to be uniformly ψ-continuous if for any ε > 0 there exists
δ(ε) > 0 such that dT (τ(µ1), τ(µ2)) < ε if dψ(µ1, µ2) < δ(ε). Note that, given

a random measure χ on (E,E ) with support in Mψ
1 (E) and a ψ-continuous

statistic τ on Mψ
1 (E), the composition τ(χ) is (F ,T )-measurable.

De�nition 2 (Strong Consistency). Given a statistic τ : Mψ
1 (E) → T and

a random measure χ on (E,E ), we say that τ , or equivalently, the sequence
of estimators (τn)n induced by τ , is strongly consistent for τ(χ) if one has
P-almost surely that τn → τ(χ), as n→ +∞.

4. Consistency

Let (Ω,F ,P) be the complete probability space introduced in the previ-
ous section.
Stationarity. We denote by Σ the shift operator on EN, i.e.

Σ(x1, x2, . . .) = (x2, x3, . . .) , for any (x1, x2, . . .) ∈ EN .
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The random sequence ξ , (ξ1, ξ2, ...) in (E,E ) given by the canonical
projections is said to be stationary if one has L (ξ) = L (Σξ).

Here and in what follows, L (ξ) , P ◦ ξ−1 denotes the distribution on
(EN,E N) induced by the random sequence ξ.
The shift invariant σ-algebra. The shift invariant σ-algebra is de�ned to be
the collection I of the Borel sets I ∈ E N such that Σ−1(I) = I, and plays a
crucial role in what follows.

Observe that if the variables ξn are i.i.d, then the σ-algebra I turns out
to be P-trivial, see, e.g., Corollary 1.6 in [16].
Canonical random measure. We now introduce the canonical random mea-
sure associated to the sequence ξ.

Lemma 5. There exists an essentially unique regular version υ of the con-

ditional distribution P[ξ1 ∈ · |I ].

Recall that υ is by de�nition a I -measurable random probability measure
over (E,E ), i.e. in particular a probability kernel (ω,B) 7→ υ(ω,B) from the
probability space (Ω,F ,P) to (E,E ). In other terms, υ is what we have
termed a random measure. We refer to �10.4 of [2] for background and
relevance of regular version of conditional distributions.

Proof of Lemma 5. See, e.g., Lemma 10.4.3 and Corollary 10.4.6 in [2]. Re-
call that E is Polish and E is Borel, hence countably generated.

In the remainder of this paper, we refer to υ as the canonical random

measure associated to ξ.
Note that, in the case when the projections ξn are independent with

common distribution µ, so that L (ξn) = µ for each n ≥ 1, then P-almost
surely υ = µ. This is so because I is P-trivial and then

P[ξ1 ∈ ·|I ] = P[ξ1 ∈ ·] = µ, P-a.s. (5)

Observe that when L (ξ1) ∈Mψ
1 (E), i.e. when

∫
E
ψ(x) P◦ξ−1

1 (dx) < +∞,

we have P-almost surely that υ ∈Mψ
1 (E).

In next paragraphs we address the convergence of estimators.
When the random variables ξ1, ξ2, ... are independent and identically dis-

tributed, Varadarajan's theorem (which we record below as Proposition 4)
asserts the convergence in the weak topology of the empirical process.
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Proposition 4. Assume that the variables ξ1, ξ2, ... are independent with

common law µ ∈M1(E), then, P-almost surely mn → µ in the weak topology,

as n→∞.

Proof. See, e.g., Theorem 11.4.1 in [5].

Analogously, for the ψ-weak topology inMψ
1 (E) we also have the following

Varadarajan type theorem, which will be proved later by using Propositions
5 and 6.

Theorem 1. If ξ is stationary and such that L (ξ1) ∈Mψ
1 (E), then P-almost

surely mn → υ in the ψ-weak topology, as n→ +∞.

Recall that a family G of Borel functions on E is said to be an universal

Glivenko-Cantelli class if

sup{|(mn − µ)f | : f ∈ G} → 0, P-a.s. as n→ +∞,

whenever the variables ξ1, ξ2, ... that direct the empirical process (mn)n are
independent with common generic distribution µ ∈M1(E).

Proposition 5. The unit ball BL1(E) constitutes an universal Glivenko-

Cantelli class.

Proof. Firstly, if ξ1, ξ2, ... are independent with common generic distribution
µ ∈ M1(E), then, according to Lemma 4, P-almost surely mn → µ in the
weak topology as n→ +∞. Therefore, as discussed in Section 2.1, we obtain
that β(mn, µ)→ 0, as n→ +∞.

Proposition 6. If ξ is stationary, then P-almost surely mn → υ in the weak

topology, as n→ +∞.

Proof. According to Remark 1, we now use a totally bounded metric on E to
de�ne the norm ‖ · ‖BL1(E). The unit ball BL1(E) is an uniformly bounded
family of Borel functions on E. Moreover, it is separable for the supremum
norm, due to Proposition 1.

Thus, since BL1(E) forms an universal Glivenko-Cantelli class according
to Proposition 5, Theorem 1.3 combined to Corollary 1.4 in [24] apply, and
in particular we have

sup{|(mn − υ)f | : f ∈ BL1(E)} → 0, P-a.s. as n→ +∞ (6)
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The proof now concludes since (6) gives that β(mn, υ) → 0 almost surely,
as n → +∞, and so that P-almost surely mn → υ in the weak topology, as
n→ +∞.

Proof of Theorem 1. According to Proposition 6, we have that P-almost surely
mn → υ in the relative weak topology, as n→ +∞. Thus, in view of Remark
2, it remains to show that

|mnψ − υψ| → 0, P-almost surely as n→ +∞.

We apply now von Neumann's version of Birkho�'s ergodic theorem as
stated in [15], Theorem 9.6. Using the notation therein, consider as space
S , Ω = EN, as transformation T , Σ, the shift operator de�ned on it, and
as measurable function f , ψ ◦ ξ1.

Notice that the shift operator T preserves the measure P since ξ is as-
sumed to be stationary. If we write µ for the common law µ = L (ξ1), then
a change of variables gives that∫

S

fdP =

∫
Ω

ψ(ξ1)dP =

∫
E

ψ(x)P ◦ ξ−1
1 (dx) =

∫
E

ψ dµ .

Since by hypothesis L (ξ1) = µ ∈Mψ
1 (E), we have

∫
E
ψ dµ = µψ < +∞ and

therefore f ∈ L1(Ω,F ,P).
Hence, we conclude that

mnψ → E[ψ(ξ1)|I ], P-almost surely as n→ +∞.

Finally, according to the disintegration theorem (cf. [15], Theorem 5.4), we
may recast the limit variable and write

E[ψ(ξ1)|I ] =

∫
E

ψ dP[ξ1 ∈ ·|I ] = υψ, P-almost surely.

Remark 3 (Ergodicity). Under the same hypotheses of Theorem 1, but as-
suming additionally that ξ is ergodic, or equivalently that its distribution
L (ξ) is ergodic with respect to the shift operator Σ, i.e. P{ξ ∈ I} ∈ {0, 1}
for any I ∈ I , we easily get that P-almost surely the empirical process
(mn)n converges to µ = L (ξ1) in the ψ-weak topology, as n → +∞, since
the σ-�eld ξ−1I turns out to be P-trivial in such a case.
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The next result is an immediate consequence of Theorem 1.

Corollary 1 (Strong Consistency). If ξ is stationary such that L (ξ1) ∈
Mψ

1 (E) and τ : Mψ
1 (E)→ T is ψ-continuous, then the sequence of estimators

(τn)n is strongly consistent for τ(υ).

Remark 4. The proofs of Theorem 1 and Corollary 1 are in line with the one
of Theorem 2.6 in [19], which further assume the sequence ξ to be ergodic.
In particular, within the cited work the role of the map τ in Corollary 1 is
recovered by a law-invariant convex risk measure and Theorem 6.6 in [23] is
considered instead of Corollary 1.4 in [24].

Suppose that ξ describes the outcome in a sequence of trials. According
to the present framework, any element of the sample space Ω , EN may
be understood as a path of ξ. On the other hand, the random measure υ
is a regular version of the distribution induced by the single variable within
the process ξ, conditioned on the information encoded by the shift invariant
σ-algebra I . In this respect, each ω ∈ Ω completely describes the limit dis-
tribution υ(ω, · ), which may be understood as the best available description
of the outcomes.

5. Asymptotic stability

Let θ be a E -measurable endomorphism over E, i.e. a (E ,E )-measurable
map from E to itself, and set

λP,θ(α) , P{dψ(υ, υ ◦ θ−1) > α}, for any α > 0, (7)

where the random variable υ ◦ θ−1 is de�ned by

(ω,B) ∈ Ω× E 7→ (υ ◦ θ−1)(ω,B) , υ(ω, θ−1(B)). (8)

Note that the function (7) is well de�ned, since dψ is trivially (M ψ ⊗M ψ)-
measurable. Moreover, observe that λθ is a decreasing function in α > 0 and
that λP,θ(α) → 1 as α → 0 and λP,θ(α) → 0 as α → +∞, via monotonicity
arguments.

Assume that the statistic τ is uniformly ψ-continuous and that κ is
a modulus of continuity of τ , i.e. a continuous strictly increasing map
[0,+∞]→ [0,+∞] such that

dτ (τ(µ1), τ(µ2)) ≤ κ(dψ(µ1, µ2)), for any µ1, µ2 ∈Mψ
1 (E).
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Note that, since λP,θ(α) ≤ κ(α) for α large enough, we are allowed to set

‖θ‖P,κ , inf{α > 0 : λP,θ(α)≤κ(α)}. (9)

Example 1. Assume ξ to be stationary and ergodic, i.e. P{ξ ∈ I} ∈ {0, 1}
for any I ∈ I . As a consequence, the sequence θ(ξ1), θ(ξ2), ... turns out to
be stationary and ergodic (see Lemma 9.1 combined with Lemma 9.5 in [15])
and hence

υ = P[ξ1 ∈ ·|I ] = P ◦ ξ−1
1 a.s.

υ ◦ θ−1 = P[θ(ξ1) ∈ ·|I ] = P ◦ θ(ξ1)−1 a.s.

Next, assume P ◦ ξ−1
1 = δx1 for some x1 ∈ E, and suppose that θ(x1) = x2,

which implies P ◦ θ(ξ1)−1 = δx2 . Then, one has dψ(υ, υ ◦ θ−1) = dψ(δx1 , δx2)
a.s. where

dψ(δx1 , δx2) = min{dE(x1, x2), 1}+ |ψ(x1)− ψ(x2)| a.s.

and as a direct consequence, the following bound holds

‖θ‖P,κ ≤ min{dE(x1, x2), 1}+ |ψ(x1)− ψ(x2)|.

Lemma 6. If τ is uniformly ψ-continuous and it admits κ as modulus of

continuity, then π(P ◦ τ(υ)−1,P ◦ τ(υ ◦ θ−1)−1) ≤ κ(‖θ‖P,κ).

Proof. Let C ∈ T and �x α > 0 such that λP,θ(α)≤κ(α). Since τ is ψ-
continuous, then τ−1(C) ∈M ψ. In particular, for any A ∈M ψ, we denote
by Aε , {µ ∈Mψ

1 (E) : dψ(µ, ν) ≤ ε, for some ν ∈ A} the ε-hull of A de�ned
in terms of the metric dψ.

Notice that [τ−1(C)]α ⊆ τ−1(Cκ(α)) in Mψ
1 (E), since τ is uniformly ψ-

continuous and admits κ as modulus of continuity, where the κ(α)-hull Cκ(α)

of C is de�ned in terms of the metric dT . Hence, υ ◦ θ−1 ∈ [τ−1(C)]α

implies υ ◦ θ−1 ∈ τ−1(Cκ(α)), and in particular one has that P{υ ◦ θ−1 ∈
[τ−1(C)]α} ≤ P ◦ τ(υ ◦ θ−1)−1(Cκ(α)). Thus,

P ◦ τ(υ)−1(C) ≤ P{dψ(υ, υ ◦ θ−1) > α}+ P{υ ◦ θ−1 ∈ [τ−1(C)]α}
≤ κ(α) + P ◦ τ(υ ◦ θ−1)−1

(
Cκ(α)

)
.
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Then, since the choice of C ∈ T is arbitrary, one has that

π
(
P ◦ τ(υ)−1,P ◦ τ(υ ◦ θ−1)−1

)
≤ κ(α).

The proof is concluded by letting α tend to ‖θ‖P,κ, while invoking the conti-
nuity of κ.

Remark 5. Note that, if κ is de�ned to be the identity on (0,+∞), then (9)
boils down to the Ky Fan distance between υ and υ ◦ θ, which are under-
stood as random variables with values in (Mψ

1 (E),M ψ), (cf. [5], �9.2). In
particular, when looking at Lemma 6, this is the case when τ is a contraction.

Theorem 2 (Asymptotic stability). Let ξ be stationary such that L (ξ1) ∈
Mψ

1 (E) and assume that L (θ(ξ1)) ∈Mψ
1 (E). If τ is uniformly ψ-continuous

and it admits κ as modulus of continuity, then

lim sup
n≥1

π(P ◦ τ(mn)−1,P ◦ τ(mn ◦ θ−1)−1) ≤ κ(‖θ‖P,κ). (10)

Proof. By the triangle inequality,

π(P ◦ τ(mn)−1,P ◦ τ(mn ◦ θ−1)−1) ≤
π(P ◦ τ(mn)−1,P ◦ τ(υ)−1)

+ π(P ◦ τ(υ)−1,P ◦ τ(υ ◦ θ−1)−1)

+ π(P ◦ τ(υ ◦ θ−1)−1,P ◦ τ(mn ◦ θ−1)−1).

(11)

Since τ is uniformly ψ-continuous and it admits κ as modulus of continuity,
Lemma 6 applies. Thus, we deduce from inequality (11) that

lim sup
n≥1

π(P ◦ τ(mn)−1,P ◦ τ(mn ◦ θ−1)−1) ≤ κ(‖θ‖P,κ)

+ lim sup
n≥1

π(P ◦ τ(mn)−1,P ◦ τ(υ)−1)

+ lim sup
n≥1

π(P ◦ τ(mn ◦ θ−1)−1,P ◦ τ(υ ◦ θ−1)−1).

Since ξ is assumed to be stationary such that L (ξ1) ∈ Mψ
1 (E) and τ is

ψ-continuous, the result described in Corollary 1 guarantees that P-almost
surely τ(mn)→ τ(υ), as n→ +∞, and hence

lim sup
n≥1

π(P ◦ τ(mn)−1,P ◦ τ(υ)−1) = 0.
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On the other hand, the sequence θ(ξ1), θ(ξ2), ... is stationary since ξ is sta-
tionary (see Lemma 9.1 in [15]). Moreover, note that

mn ◦ θ−1 ,
1

n

∑
i≤n

δξi ◦ θ−1 =
1

n

∑
i≤n

δθ(ξi).

Then, since L (θ(ξ1)) ∈Mψ
1 (E), Corollary 1 guarantees that P-almost surely

τ(mn ◦ θ−1) → τ(υθ), as n → +∞, where we write υθ to denote a regular
version of the conditional distribution P[θ(ξ1) ∈ ·|I ]. On the other hand,
notice that P-almost surely P[θ(ξ1) ∈ ·|I ] = P[ξ1 ∈ θ−1(·)|I ] and hence
υθ = υ ◦ θ−1. Thus,

lim sup
n≥1

π(P ◦ τ(mn ◦ θ−1)−1,P ◦ τ(υ ◦ θ−1)−1) = 0.

Remark 6. In the case when ξ describes the outcomes in a sequence of trials,
we may understand the action of the endomorphism θ as a perturbation of
the available dataset and the function λθ de�ned in (7) measures the impact
of such a perturbation in terms of the random measure υ.

It is easy to realize that, when the perturbation procedure encoded by
the action of the map θ does not change appreciably the random measure υ
in the stochastic sense provided by (7), then one should expect ‖θ‖P,κ to be
small. In particular, this form of continuity is properly assessed in terms of
κ.

In the particular case when τ admits κ as modulus of continuity, Theorem
2 guarantees that any changes in the law of τn due to small perturbations at
the level of the dataset encoded by the map θ are asymptotically gauged by
the relation described in (10) by means of the terms κ(‖θ‖P,κ).

For instance, �x a function f such that f − ψ ∈ BL1(E) and consider τf
to be the functional on Mψ

1 (E) de�ned by setting µ ∈Mψ
1 (E) 7→ τf (µ) , µf .

Notice that

|τf (µ)− τf (ν)| ≤ β(µ, ν) + |(µ− ν)ψ| ≤ Cdψ(µ, ν), for any µ, ν ∈Mψ
1 (E),

for some positive constant C, since the distance β as given in (2) is equivalent
to Prohorov metric π. Hence, τ is uniformly ψ-continuous and it admits
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κ(α) , Cα, for α ≥ 0, as modulus of continuity. According to Theorem 2,
the changes in the law of the sample mean of f ,

mnf =
1

n

n∑
i=1

f(ξi), (12)

with respect to the metric π, when considering the sequence θ(ξ1), θ(ξ2), ...
are asymptotically controlled by the term

‖θ‖P,κ = inf{α > 0 : λP,θ(α)≤Cα}.

Remark 7 (Qualitative Robustness). Theorem 2 and its interpretation in
Remark 6 are in line with the notion of qualitative robustness as discussed in
Krätschmer et al. [18, 19] and Zähle [25, 26]. Following these cited authors,
any statistic τ is said to be qualitative robust if small changes of the law
related to the outcomes ξn only result in small changes of the distribution
characterizing the estimators τn, for n large enough.

Remark 8 (Asymptotic Stability and Elicitability). Elicitability provides a
widely discussed aspect in evaluating point forecasts; for background see for
instance [6, 10, 22, 27]. In this respect, assume that the statistic τ is elicitable,
relative to the class Mψ

1 (E), by considering some strictly consistent scoring

function S : T ×E → [0,+∞). Moreover assume that τ is uniformly contin-
uous with respect to the functional (µ, ν) 7→ S̃(µ, ν) ,

∫
E
S(τ(µ), x)ν(dx) in

the sense that

dT (τ(µ), τ(ν)) ≤ κ(S̃(µ, ν)), for any µ, ν ∈Mψ
1 (E), (13)

for some non-negative continuous and increasing function κ vanishing at zero.
Recall that ‖θ‖P,κ as de�ned in (9) implicitly depends on the metric dψ.

In a similar way, if S̃ is (M ψ ⊗M ψ)-measurable, we may de�ne

‖θ‖(1)
P,κ , inf{α > 0 : P{S̃(υ, υ ◦ θ−1) > α} < κ(α)}. (14)

Hence, under condition (13) a similar estimate as provided in Lemma 6
may be assessed in terms of (14), and if in addition τ is assumed to be
ψ-continuous, ξ is stationary and P is quasi-invariant under θ, then, the
arguments in the proof of Theorem 2 still remain in force and give

lim sup
n≥1

π(P ◦ τ(mn)−1,P ◦ τ(mn ◦ θ−1)−1) ≤ κ(‖θ‖(1)
P,κ).
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As an example, when considering E and T to be the real line endowed
with the euclidean metric and ψ the identity, if τ : µ ∈Mψ

1 (E) 7→
∫
R xµ(dx)

de�nes the mean and S(x, y) , (x− y)2, for any (x, y) ∈ R2, then condition
(13) is guaranteed when for instance κ(z) ,

√
z, for any z ≥ 0.

Observe also that, in the case when ψ is strictly increasing and τ(µ) is
de�ned as the α-quantile of the law µ ∈Mψ

1 (E), for some �xed α ∈ (0, 1), and
the related scoring function is given by S(x, y) , (1{x≥y}− α)(ψ(x)−ψ(y)),
(see, e.g., Theorem 3.3 in [10]), condition (13) fails for any κ.

6. Concluding Remarks

Theorem 1, as well as Corollary 1 and Theorem 2, still remain in force
when the sequence of projections ξ1, ξ2, ... displays some other forms of prob-
abilistic symmetries.

Recall that the random sequence ξ = (ξ1, ξ2, ...) is said to be exchangeable
if and only if L (ξi : i ∈ I) = L (ξπI(i) : i ∈ I), for any �nite family I of
indices and any permutation πI on it. A numerable sequence of exchange-
able random variables is always stationary, (cf. [14], Proposition 2.2). In
particular, we get that P-almost surely I = σ(υ), (cf. [16], Corollary 1.6).
In addition, each of the previous σ-algebras turns out to be P-trivial in the
independence setup. In this respect, we are allowed to recast the limit ran-
dom variable in Theorem 1 by writing υ = P[ξ1 ∈ · |υ], where the equality
shall be intended in the P-almost surely sense. On the other hand, according
to de Finetti's Theorem (cf. [16], Theorem 1.1), when dealing with a nu-
merable random sequence ξ = (ξ1, ξ2, ...) in E, the notion of exchangeability
equals a conditional form of independence, i.e. one has that P-almost surely
P[ξ ∈ · |υ] = υN.

Exchangeability provides the main pillar of the Bayesian approach to
the inferential analysis. More precisely, when dealing with the non para-
metric setup, the law induced by the random measure υ over the space
(Mψ

1 (E),M ψ) may be regarded as the prior distribution of the statistical
model ξ1, ξ2, ...|υ ∼iid υ, where the latter form of independence is to be un-
derstood in terms of de Finetti's theorem.

According to such a formulation, Theorem 2 may be regarded as a form
of stability obtained when the prior distribution of the model is forced to
change, by considering the random measure de�ned by identity (8).
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