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Abstract

In this paper we cast the well-known convo-
lutional neural network in a Gaussian process
perspective. In this way we hope to gain ad-
ditional insights into the performance of con-
volutional networks, in particular understand
under what circumstances they tend to per-
form well and what assumptions are implic-
itly made in the network. While for feedfor-
ward networks the properties of convergence
to Gaussian processes have been studied ex-
tensively, little is known about situations in
which the output from a convolutional network
approaches a multivariate normal distribution.
In the convolutional net the sum is computed
over variables which are not necessarily identi-
cally distributed, rendering the general central
limit theorem useless. Nevertheless we can ap-
ply a Lyapunov-type bound on the distance be-
tween the Gaussian process and convolutional
network output, and use this bound to study
the properties under which the convolutional
network behaves approximately like a Gaus-
sian process, so that this behavior –depending
on the application– can be either obtained or
avoided.

1 Introduction

A convolutional neural network (CNNs) is a biologically-
inspired type of deep neural network (DNN) that has
recently gained popularity due to its success in clas-
sification problems in particular computer vision and
speech recognition, see e.g. [Krizhevsky et al., 2012],
[Kim, 2014], [Karpathy et al., 2014], but also in forecast-
ing problems [van den Oord et al., 2016]. The CNN con-
sists of a sequence of convolutional layers, the output of
which is connected only to local regions in the input. This
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is achieved by a convolution: sliding a filter over the in-
put and at each point computing the dot product between
the two. This structure allows the model to learn filters
that are able to recognize specific patterns in the input
data and moreover combine the learned patterns in a hi-
erarchical way.

While convolutional networks have been shown to pos-
sess the ability of learning invariant features, many of
the inner workings of a CNN still remain unknown. Ap-
proaching the convolutional network from a Bayesian
perspective by assuming a probability distribution on the
network parameters one can induce a distribution on the
output function. While computing the distribution of the
output of the network exactly can be challenging, one can
study the network by means of its limiting behavior.

It is well known that a neural network with an infinite
number of hidden nodes and weights initialized from a
Gaussian distribution, by an application of the central
limit theorem (CLT), outputs a function with a Gaussian
process prior [Neal, 2012]. This work motivated a theo-
retical understanding of neural networks and deep learn-
ing through the kernel methods and in particular Gaus-
sian processes (GPs).

1.1 Our contributions

While convolutional neural networks were developed
from a practice-based approach, and have empirically
been shown to be very powerful, we argue that also the-
oretically these networks should be rationalized. We ex-
tend the theoretical understanding of CNNs by connect-
ing convolutional neural networks to Gaussian processes.
Unlike feedforward neural networks in which the output
layer computes a sum of independent and identically dis-
tributed random variables, in the convolutional network
the sum in each layer is computed over independent but
not necessarily identically distributed weighted variables
from the previous layer, thus possessing a compositional
structure which the feedforward net lacks. While the
general CLT is unapplicable in this non-identically dis-
tributed case, we can employ a generalized central limit



theorem [Bentkus, 2005] in the form of a Lyapunov-type
bound to study the convolutional network from a Gaus-
sian process perspective. Our work therefore extends the
well-known concept of convergence to GP behavior in
wide feedforward neural networks to convolutional net-
works. Besides the theoretical derivations we empirically
study the discrepancy between convolutional networks
with finite filters and the Gaussian processes in which the
kernel is defined recursively. In this way we gain insight
into the behaviour of the CNNs, and in particular how and
when a GP behavior can be obtained or avoided. As the
receptive field of a CNN grows with both filter size and
number of layers, we show that using a linear activation
allows for a convergence dependent on the total receptive
field. Similarly, also for certain non-linear activations we
numerically show that the GP behavior is still obtained
regardless of the number of layers used, contrary to the
result in feedforward networks which lack the composi-
tionality feature of CNNs and in which a larger number
of layers results in a larger discrepancy. Using a non-
bounded ReLU activation however allows to deviate from
the GP behavior, since it seems to no longer be possible
to propagate the dependence on the input throughout the
network.

1.2 Related work

Gaussian processes have been a well-known instrument
used in forecasting time series by defining through them
a flexible prior over functions in regression models
[Rasmussen and Williams, 2006]. The ability of the GP
to learn meaningful dependencies is fully encoded by the
covariance function, a function that specifies the depen-
dence between the inputs and learning a flexible and ex-
pressive covariance kernel is therefore an active topic of
research, see e.g. [Gibbs, 1998], [Cho and Saul, 2009],
[Wilson and Adams, 2013]. The Gaussian process uses
infinitely many fixed basis functions, and typically
work as smoothing devices, as opposed to the neu-
ral network which use a finite number of adaptive ba-
sis functions. Combining the non-parametric flexibil-
ity of the GPs with the adaptiveness of neural networks
can therefore improve the generalisation capabilities of
the GPs, see e.g. [Hinton and Salakhutdinov, 2008],
[Wilson et al., 2011], [Bradshaw et al., 2017]. In partic-
ular, the authors in [Wilson et al., 2016] used a deep neu-
ral network to transform inputs into complex kernels
functions, in which the DNN parameters become ker-
nel hyperparameters and [Calandra et al., 2016] used a
neural network to transform the input space into a fea-
ture space and training a Gaussian process on this space.
In [van der Wilk et al., 2017] the authors use a convolu-
tional structure in combination with Gaussian processes
to create a convolutional kernel and improve the gen-
eralisation abilities; the difference with our work here
being that we study the ability of the CNN to by con-
struction perform as a GP. The convolutional structure

also has similarities with the additive Gaussian processes
[Duvenaud et al., 2011], [Durrande et al., 2012]. These
deep and additive kernels bear similarities with the kernel
of the Gaussian process that naturally arises when relat-
ing the GP to the CNN. As we will show, it is defined
as a sum of random variables, in which the kernel in the
final output layer can be recursively defined through the
previous layer kernel functions.

The relation between neural networks with one hidden
layer and GPs was studied in [Neal, 2012]. In partic-
ular cases of the activation function the resulting ker-
nels can be computed analytically, see [Williams, 1997]
where analytic expressions for the sigmoidal and Gaus-
sian activations are derived. In [Cho and Saul, 2009] the
authors provided analytical expressions for the recursive
kernel dependency to mimic the behavior in a deep net-
work when using a rectified linear unit activation func-
tion. Similarly, the work of [Hazan and Jaakkola, 2015]
studied the behaviour of the GP kernels in deep infi-
nite networks. In [Lee et al., 2018] the authors identify
the relation between using these kernels as the covari-
ance function for a GP and predicting with Bayesian deep
neural networks. The authors of [Matthews et al., 2018]
also study the connection between deep fully connected
networks to GPs, in particular focussing on the con-
vergence of the deep finite networks to Gaussian pro-
cesses and the discrepancy between their outputs. Also
worth mentioning is the area of deep Gaussian processes
[Damianou and Lawrence, 2013] which essentially stack
several GPs giving rise to a richer class of probability
models.

2 Background

Gaussian processes gained popularity in the machine
learning community after the work of [Neal, 2012]
showed that the neural network prior tends to a Gaussian
process as the number of hidden units tends to infinity. In
this section we shortly repeat the main conclusions.

2.1 Gaussian processes

Consider the n-dimensional vector of function val-
ues (f(x1), ..., f(xn)) evaluated at xi ∈ X where
X is the input space, i = 1, ..., n. Then for
f : X → R we say that f is a Gaussian process
[Rasmussen and Williams, 2006], i.e.

f(x) ∼ GP(m(x), k(x, x′)),

if any finite subset (f(x1), ..., f(xn)) has a multivariate
Gaussian distribution. The Gaussian process is defined
over the index set X here equivalent to the input domain,
and it is completely specified by its mean function and



covariance function as

m(x) = E(f(x)),

k(x, x′) = cov(f(x), f(x′))

= E((f(x)−m(x))f(x′)−m(x′))),

for x, x′ ∈ X . The covariance function k : X × X → R
defines the nearness or similarity between two inputs x
and x′. Given a sample of input points X = (x1, ..., xn),
the covariance matrix for this sample K(X,X) ∈ Rn×n
has entries Ki,j = k(xi, xj). Consider now the set of
training pointsD = {(xi, yi)Ni=1}. Let y = f(x)+ε, with
a Gaussian likelihood, i.e. ε ∼ N (0, σ2

ε ) and assume a
Gaussian prior on the function f ∼ GP(0, k). If the prior
on f is a GP and the likelihood is Gaussian the posterior
on f is also a GP and the predictive distribution is given
by

p(y∗|x∗,D) =

∫
p(y∗|x∗, f,D)p(f |D)df

= N (f̄∗, cov(f∗)),

f̄∗ = K(x∗, x)(K(x, x) + σ2
ε I)−1y,

cov(f∗) = K(x∗, x∗)

−K(x∗, x)(K(x, x) + σ2
ε I)−1K(x, x∗).

2.2 Neural networks and Gaussian processes

Consider an input x ∈ X and a feedforward neural net-
work consisting of L ≥ 2 layers with M hidden nodes in
each layer l = 1, ..., L. Each layer l in the network then
computes for each i = 1, ...,M

ali(x) =

M∑
j=1

wli,jz
l−1
j + blj , zli(x) = h(ali(x))),

where we explicitly denote the dependence on a partic-
ular input sample x, and wl ∈ RM×M , bl ∈ RM and
h(·) is the nonlinear activation function. Note that in the
first layer we compute the linear combination using the
input, i.e. z0 = x and M = d. From [Neal, 2012],
we know that a neural network with the number of hid-
den units tending to infinity approaches a Gaussian pro-
cess prior. Let the weights wl and biases bl have zero
mean Gaussian distributions with variances σ2

w = ν2w/M
and σ2

b , respectively. Since ali is a sum of i.i.d. terms –
the weights and hidden units – from the CLT it follows
that in the limit of M → ∞, the ali will be normally
distributed. Similarly consider the joint distribution of
(ali(x

1), ..., ali(x
N )), where (x1, ..., xN ) is a finite set of

input samples. Since each unit consists of a sum i.i.d.
terms with zero mean and fixed covariance, we can apply
the multivariate CLT. This tells us that this distribution is

multivariate Gaussian, so that

ali ∼ GP(0, kl(xp, xq)),

kl(xp, xq) := E
[
ali(x

p)ali(x
q)
]

= σ2
b +

M∑
j=1

σ2
wE
[
zl−1j (xp)zl−1j (xq)

]
= σ2

b + ν2wC
l(xp, xq),

with Cl(xp, xq) = E
[
h(al−1j (xp))h(al−1j (xq))

]
the

same for all j. Ways of analytically computing this ker-
nel are discussed in [Williams, 1997], while the authors
in [Lee et al., 2018] present a numerical way of comput-
ing the kernel for deep neural networks.

3 Convolutional neural networks and
Gaussian processes

Consider a convolutional neural network in a one-
dimensional setting for ease of notation. Suppose we are
given a sequence of inputs X = (x1, ..., xd), where each
xi ∈ R is assumed to be one-dimensional and a set of
outputs Y = (y1, ..., yd′). The output from the first layer
is given by convolving the filter w1 with finite support
with the input:

a1i = (w1 ∗ x)(i) =

M∑
j=1

wljxi−j , z1 = h(a1), (1)

where w1 ∈ R1×M and a1 ∈ R1×N−M+1 and the linear
combination is passed through the non-linearity h(·) to
give z1 = h(a1). In each subsequent layer l = 2, ..., L
the input feature map, zl−1 ∈ R1×Nl−1 , where 1×Nl−1
is the size of the output filter map from the previous con-
volution with Nl−1 = Nl−2 −M + 1, is convolved with
a filter wl ∈ R1×M , to create a feature map al ∈ R1×Nl :

ali = (wl ∗ zl−1)(i) =

M∑
j=1

wljz
l−1
i−j , zli = h(ali), (2)

with the forecasted output given by ŷ = aL. Define the
receptive field to be the number of inputs which mod-
ify the output. The filter size parameter M thus controls
the receptive field of each output node. Without zero
padding, in every layer the convolution output has width
Nl = Nl−1 −M + 1 for l = 1, .., L and by padding the
input with a vector of zeros the size of the receptive field
we can control the output size to have the same size as the
input. Since all the elements in the feature map share the
same weights this allows for features to be detected in a
time-invariant manner, while at the same time it reduces
the number of trainable parameters.

3.1 Central limit theorem

Consider now the convolutional neural network given
in (1) - (2). Let the inputs (x1, ..., xT ) be the input



Figure 1: A configuration of a two-layer feedforward net-
work (T) and a convolutional network with a filter size of
two, the weights are shared across an input layer as indi-
cated by the similar colors (B).

vector. Initialize all weights in the convolutional neu-
ral network to be independent samples from a Gaussian
prior N (0, σ2

w). Consider the output of the convolu-
tion in the first layer a1 ∈ Rd where we let d be the
placeholder for the dimension of the output. We have
a1 = [a11, a

2
1, ..., a

1
d]
T with covariance matrix

K1 =


E[a11a

1
1] E[a11a

1
2] · · · E[a11a

1
d]

E[a12a
1
1] E[a12a

1
2] · · ·

...
...

...
. . .

...
E[a1da

1
1] · · · · · · E[a1da

1
d]

 ,
in which

a1i =

M∑
j=1

w1
jxi−j , K1

i,k = σ2
w

M∑
j=1

E[xi−jxk−j ]. (3)

The matrix K1 thus defines the covariance between the
elements of the vector a1. The terms in the summation
for a1 are independent by the independence between the
input and weights and the i.i.d. distribution of the weights

E[w1
jxi−jw

1
kxi−k] = E[w1

jw
1
k]E[xi−jxi−k] = 0.

However, the terms are not necessarily identically dis-
tributed. In particular, we have E[w1

jxi−j ] = 0 for all i
but E[w1

jxi−jw
1
jxi−j ] = σ2

wE[xi−jxi−j ] does not have
to equal σ2

wE[xi−kxi−k]. In vector notation

V 1
1 =


w1x1−1
w1x2−1
...

w1xd−1

 , ... , V 1
M =


wMx1−M
wMx2−M

...
wMxd−M

 ,

where each vector V 1
j has covariance matrix with ele-

ments Σi,k = σ2
wxi−jxk−j . Conditionally on the in-

puts these vectors are independent but not identically
distributed. Therefore, a straightforward application of
the multivariate central limit theorem, as is done in the
feedforward neural network case, does not apply. Let
|x|2 = x21 + · · ·+ x2d. We introduce the following Theo-
rem as proven in [Bentkus, 2005]

Theorem 1 (A Lyapunov-type bound in Rd). Let
X1, · · · , XM be independent random vectors taking val-
ues in Rd such that E[Xi] = 0 for all i. Let S =
X1 + · · · + XM . Assume that the covariance operator
Σ2 of S is invertible. Let Z ∼ N (0,Σ2), a centered
Gaussian with covariance matrix Σ2. Let C stand for the
class of all convex subsets of Rd. Then

sup
A∈C

∣∣∣∣P(S ∈ A)−P(Z ∈ A)

∣∣∣∣ (4)

≤ O(d1/4)

M∑
i=1

E
[∣∣Σ−1Xi

∣∣3] .
In particular the above Theorem is able to give a rate of
convergence between S and Z but does not require the
random variables in the sum to be identically distributed,
making it well-suited for application in the convolutional
neural network. As a special case of the above we have

Theorem 2 (Independent and identically distributed
case). If the random variables X1, · · · , XM are i.i.d.
and have identity covariance Id, then the lower bound
specifies to

sup
A∈C

∣∣∣∣P(S ∈ A)−P(Z ∈ A)

∣∣∣∣
≤ O(d1/4)E

[∣∣X1

∣∣3] /√M.

Note that the assumption Σ2 = Id is not restrictive since
we can rescale both S and Z by Σ−1 to give the iden-
tity covariance matrix. In other words, the above Theo-
rems give a bound on the distance between the probabil-
ity distribution of the (vector-valued) sum of not neces-
sarily identically distributed variables, i.e. the output al,
l = 1, 2, ... as computed in a convolutional neural net-
work, and the probability distribution of a multivariate
Gaussian random variable, i.e. the output of a Gaussian
process in which the kernel is given by Σ2. In order to be
able to measure the closeness of the CNN and the GP we
thus need to evaluate the right-hand side of equation 4.

3.2 Kernel specification

The output from the first layer, a1, has a covariance ma-
trix with elements given in (3). For the output and covari-



ance matrix in the next layers we have

ali =

M∑
j=1

wljz
l−1
i−j , Kl

i,k = σ2
w

M∑
j=1

E
[
zl−1i−jz

l−1
k−j

]
(5)

Again while the terms ali are clearly dependent, the terms
in the summation are independent due to the independent
and identically distributed weights, but not necessarily
identically distributed due to the possibility of the vary-
ing covariance. The correlation between nodes in layer
l is a sum over the correlations in the receptive field of
size M in the previous layer. In this way the convolu-
tional network, as opposed to the neural network, ‘aver-
ages’ the covariances. The rectified linear unit (ReLU)
is commonly used as non-linearity in between the layers
in both classification and forecasting tasks. Assuming
that each layer output is close to a multivariate distribu-
tion, the expected value in (5) is over the bivariate nor-
mal distribution of zl−1i−j and zl−1k−j with mean zero and
covariance matrix with elements Kl

i−j,k−j , K
l
k−j,i−j ,

Kl
i−j,i−j and Kl

k−j,k−j . For the ReLU non-linearity
the expected value can be computed analytically, see
[Cho and Saul, 2009]. We thus obtain the recursive con-
nection (similar to the recursive relationship derived in
equation (12) and (13) for a feedforward network in
[Cho and Saul, 2009])

Kl
i,k =

σ2
w

2π

M∑
j=1

√
Kl−1
i−j,i−jK

l−1
k−j,k−j

·
(

sin θl−1i−j,k−j + (π − θl−1i−j,k−j) cos θl−1i−j,k−j

)
,

θli,k = cos−1

 Kl
i,k√

Kl
i,iK

l
k,k

 , (6)

where we again remark on the summation over the re-
ceptive field being the difference with the neural network
and the starting point K1 is given in (3).

Illustrating the convolutional kernel Consider the
kernel as defined in (6). As mentioned in e.g.
[Lee et al., 2018], as the number of layers grows, the re-
current relation in (5) for a feedforward neural network
approaches a fixed point so that the covariance function
becomes a constant or piecewise constant map. We can
illustrate this for a convolutional network by consider-
ing the kernel as a function of θ, the angle between two
vectors over which the dot-product in the convolution is
computed. In the convolutional network the kernel is a
sum, or average, over transforms of the kernels in the
previous layer. In this way one would expect –due to the
averaging structure– a faster convergence to the flat struc-
ture where the structure itself depends on the the angles
between the vectors over which the shifting dot-product
is computed. For the sake of illustration consider M = 2

and two distinct angles θ1 and θ2. We compute K2 as a
sum over the kernels in the previous layers K1(θ1) and
K1(θ2), see Figure 2, from which we conclude that the
averaging indeed results in a more flat structure of the
kernel. Compared to the feedforward network in which
the flattening depends on the depth, in convolutional net-
works it is additionally amplified by the convolutional
structure, i.e. the averaging over the kernels.

Figure 2: The angular structure of the convolutional ker-
nel as a function of θ1 with θ2 = 0.5 (T) and θ2 = 3 (B)
and its evolution with depth for σ2

w = 1.6
M . The red line

shows the feedforward kernel (without averaging).

4 Gaussian process convergence

In this section we theoretically and numerically study and
evaluate the conditions under which the behavior of the
CNN output tends to that of a GP. In particular we study
the discrepancy between the finite deep CNN and the cor-
responding Gaussian process in which we use the recur-
rent relationship for the kernel given in (6), through sev-
eral intuitive examples. While our focus here is mostly on
time series data and forecasting, the overall conclusions
generalize to all prediction tasks.

4.1 A theoretical bound

In order to get an idea of the discrepancy between the
CNN to the GP, one needs to quantify the term given in



the right-hand side of equation 4,

M∑
j=1

E
[
|(Kl)−

1
2V lj |3

]
, (7)

where V lj = [wljz
l−1
1−j , w

l
jz
l−1
2−j , · · · , wljz

l−1
d−j ]

T and Kl is
defined in (5). This term determines the distance between
the CNN output and the GP output. In the case of inde-
pendent inputs and linear activations we are able to prove
the following Lemma on the rate of convergence of the
CNN to the GP:

Lemma 3. Let xi for i = 1, ..., T be the input variables.
Assume wlj

iid∼ N (0, σ2
w). Assume that Kl, the covari-

ance matrix in layer l, is invertible. In the case of the
xi being independent and bounded variables with a fi-
nite second moment and when using a linear activation
function we have the following bound for some constant
C ∈ R

M∑
j=1

E
[
|(Kl)−

1
2Vj |3

]
≤ dC(M l)−

1
2 ,

Proof. By definition

Kl
i,k = (σ2

w)l
M∑
jl=1

· · ·
M∑
j1=1

E [xi−j1−...−jlxk−j1−...−jl ] .

Denote by some constant σ2
i,j the variance of xi−j , so

that the above simplifies to Kl
i,i =

∑M l

j=1 σ
2
i,j(σ

2
w)l, with

Kl a diagonal matrix and we change the variables of the
summations to an index j here left unspecified. Using
the assumption of finite second moments variances we
can find for some constant C

|(Kl)−
1
2Vj |3 ≤d(CM l)−

3
2 |σ−lw V lj |3.

We have E[|σ−1w V lj |3] ≤ E[|zl−1·−j |3]E[||σ−1w wlj |3]. Using
the fact that the squared norm of the variable σ−1w wlj fol-
lows a chi-squared distribution with 1 degree of freedom
we find E[|σ−1w wlj |3] = O(1). If the activation function
does not increase the norm of the input then |zlj |3 ≤ |alj |3

almost surely and in the linear case clearly |zlj |3 = |alj |3.
Iterating the above reasoning we then find

E[|lσ−1w V lj |3] ≤
M l∑
j=1

|x·−j |3,

which using the boundedness of xi concludes the proof.

In the non-linear case, it is more complex to quantify the
convergence with the number of layers. Due to the com-
positional nature of the CNN, increasing the number of

layers causes the receptive field of the network to grow.
In the linear, independent case we obtain a rate of con-
vergence of order

√
M l. For the rectified linear unit ac-

tivation we have an explicit expression of the kernel in
(6). From the expression we see that the kernel in the
l-th layer depends on a summation over the kernel ele-
ments in layer l − 1, so one could postulate that also in
this case the convergence rate should be dependent on the
total receptive field in this way obtaining a closer corre-
spondence with the GP as the number of layers grows.
However due to the square root and non-linear transforms
present in the expression it is far from trivial to propagate
the dependence through-out the layers and find a bound
on the inverse of the kernel function, as required by ex-
pression (7). As we shall also show in the numerical sec-
tion, application of the ReLU as the non-linear activation
function seems to allow one to diverge from GP behavior
in the output: even if the receptive field is growing, the
convergence to the GP is only governed by the filter size,
and not the total receptive field or the number of layers.
This provides a probabilistic justification for using the
ReLU activation: besides being able to transform the in-
put data in non-linear ways, it also allows one to diverge
from Gaussian output behavior and hopefully result in
more complex probability distributions. However, using
a bounded activation such as the hyperbolic tangent or
the sigmoid function numerically seems to preserve the
convergence even as the number of layers grows.

The rate of convergence between the CNN output and the
GP thus depends on the quantification of the term in (4).
In the case of sufficiently independent inputs, as is e.g.
a common assumption when working with financial re-
turns, we showed that the discrepancy between the CNN
and GP outputs to converges as M → ∞. In the non-
independent case, for a linear activation, we have

Kl = (σ2
w)l

M l∑
j=1

Σ(j), where Σ
(j)
i,k = xi−jxk−j ,

and the convergence will depend on the inverse of the
square root of this matrix, or in other words on properties
of the distribution of the input variables themselves. The
empirical properties of the data can be used in order to
understand whether GP behavior will be present in the
network.

4.2 Numerical discrepancy

The empirical discrepancy is determined using the
maximum mean discrepancy (MMD) introduced in
[Gretton et al., 2012] and applied to measuring the sim-
ilarity between GPs and feedforward neural networks in
[Matthews et al., 2018]. The MMD between two distri-
butions P and Q is defined as

MMD(P,Q,H) := sup
||h||H≤1

[
EP [h]− EQ[h]

]
,



for which we use the unbiased estimator of squared
MMD given in equation (3) in [Gretton et al., 2012]. For
the empirical computations we take an input X , pass this
through 500 convolutional neural networks and draw 500
samples from the GP with the covariance kernel corre-
sponding to the depth of the CNN as defined in (6), and
compare the results for different network parameters us-
ing the unbiased MMD estimator. We plot for compari-
son also the MMD estimator between two Gaussian pro-
cesses with RBF kernels with length scales l =

√
2 and

l = 4
√

2.

Prior discrepancy Let xi
iid∼ N (0, 1) for i = 1, ..., d

with d = 50 and let σ2
w = 1. When computing the co-

variance matrix we condition on the input so that we have
K1
i,k = σ2

w

∑M
j=1 xi−jxk−j so that the terms in the con-

volutional sum are not necessarily identically distributed;
we compute the covariance function using (6) and using
a Monte Carlo (MC) evaluation of the expected value in
(5) by using 1000 Monte Carlo simulations in which we
sample the weights wi

iid∼ N (0, σ2
w). Figures 3-4 shows

the results of the discrepancy between the GP and CNN.
In the linear case we observe a fast convergence regard-
less of the number of layers, as is in accordance with the
results of Lemma 3. Using a ReLU activation we ob-
serve a slower convergence in M as we increase l, but
nevertheless GP behavior is reached. The slower conver-
gence could be explained by the application of this type
of non-bounded non-linearity which essentially violates
the dependency structure and no longer allow for the out-
put in the network to depend on the total receptive field
but just on the number of inputs from the previous layer.
For the bounded, symmetric hyperbolic tangent activa-
tion function the discrepancy between the GP and CNN
output priors seems to be low regardless of the number of
layers. Similarly, for the bounded sigmoid function, the
total receptive field does seem to play a role in the con-
vergence, and adding more layers still results in the CNN
prior to be sufficiently close to the GP output.

We furthermore note that the expression for the kernel
in (6) is computed under the assumption of a sufficiently
normal output in each layer, which in the GP, similar to
the feedforward network, is only attained in the limit.
Nevertheless, compared to the MC computation of the
kernel, the discrepancy between the two in the output
prior seems to be sufficiently small, so that the analyt-
ical expression in (6) is also able to mimic the recur-
rent relation in the deep convolutional network. When
using CNNs for sequence forecasting a common setup
is using a filter of size 2-8 and 2-5 layers depending on
the required receptive field, see e.g. [Bai et al., 2018],
[Borovykh et al., 2017]. From Figure 3 one can conclude
that the CNN indeed tends to behave like a Gaussian pro-
cess, nevertheless when using a ReLU activation this be-
havior can be more or less avoided for a large number of
layers and a relatively small filter size.

Figure 3: MMD between the GP and CNN with a lin-
ear activation (T), with a ReLU activation using (6) (C)
and a ReLU using the MC evaluation of (5) (B) for not
identically distributed inputs.

Posterior discrepancy Consider now xi to be an au-
toregressive time series of order three for i = 1, ..., d,
a time series on which the CNN is well-able to learn
the corresponding dynamics, let σ2

w = 1 and compute
the covariance conditional on the input. Figure 5 shows
the posterior GP mean and variance as well as the mean
and variance of the CNN output obtained by training
N = 100 CNNs with random initialization (e.g. a sim-
plified form of uncertainty estimation with an ensemble
[Lakshminarayanan et al., 2016]; the network is trained
by minimizing the mean squared error which is not a
completely valid metric for capturing the uncertainty,
nevertheless in our simplified example is enough to at
least show the discrepancy between the posteriors). As
expected, we conclude that if the priors of a GP and CNN



are corresponding also their posteriors will be close.

Figure 4: MMD between the GP and CNN with a hyper-
bolic tangent activation (T) and a sigmoid activation (B)
using the MC evaluation of (5) for not identically dis-
tributed inputs.

4.3 Extension to CNNs for image processing

The convolutional network we considered before is ap-
plied to a one-dimensional input. Typically, in image pro-
cessing the convolutions are performed across a multi-
dimensional input. Consider the output of a layer l in
which Cl filters were applied to an input of with Cl−1
channels,

ali,k,c =

M∑
j,h=1

Cl−1∑
c=1

wlj,h,cz
l−1
i−j,k−h,c, for c = 1, ...,Ml,

with x ∈ RH×N×Cl−1 and w ∈ RM×M×Cl−1 , where
H ×N is the height and width of the input, and M ×M
the filter size. The weights are as usual initialized inde-
pendently from a Gaussian prior. The CNN thus com-
putes a summation over M ×M ×Cl−1 terms which are
independent (due to the weights being independent) but
not necessarily identically distributed (note: the outputs
for the different filters are identically distributed, each
filter is applied to the same input, in this way the filters
are related to the hidden nodes in the feedforward net-
work). Therefore, the Lyapunov bound still holds, and
we note here that the convergence to a GP will hold even

Figure 5: A comparison between the trained CNN mean
(T) and posterior inference in the corresponding Gaus-
sian process (B) with credible confidence intervals. The
CNN has one hidden layer and a filterwidth of three.

more strongly, as we sum over more terms. As an ex-
ample, consider Figure 3 where we see that GP behavior
is obtained for three layers using a one-dimensional fil-
terwidth of 10; for images this would mean that using a
filter of size 4× 4 would certainly result in GP behavior.

5 Conclusion and discussion

In this paper we studied the convolutional neural net-
works by considering the deep network from a Gaussian
process perspective. We extended the state of knowl-
edge about GPs and deep networks to the convolutional
network. In particular, using a Lyapunov-type bound
for the case in which the inputs are not identically dis-
tributed we are able to obtain a CLT-like result on the
discrepancy between the CNN and GP. In particular the
Lyapunov-bound defines the rate of convergence between
the CNN and GP output through the covariance kernel,
allowing one to study the discrepancy and convergence
rate through the kernel. We proved a theoretical bound
for the case in which the inputs into the CNN are indepen-
dent and a linear activation function is used and showed
that the discrepancy is influenced by both the filter width
and the number of layers. In the case of the inputs be-
ing dependent the bound will clearly depend also on the
attributes of the data itself. The empirical tests show



that using both linear and non-linear activations results
in situations in which the CNN tends to behave like a
GP, even if for the non-linear activations the convergence
is slower for particular activation functions, which coin-
cides with the results obtained in [Matthews et al., 2018]
for the feedforward network. From a Bayesian perspec-
tive, if the priors of the two are indeed close enough we
can use the analytical properties of GPs to obtain the un-
certainty estimates in the CNN, thereby avoiding compu-
tationally intensive options such as Markov Chain Monte
Carlo methods.

The downside of the expression in (6) is that it assumes
that the outputs in each layer are multivariate normally
distributed. In the convolutional neural network one in-
teresting difference with the neural network is the com-
positionality of the network, so that the receptive field,
or the number of inputs that influences the output, grows
with the number of layers and the filter width. In the
case of linear and independent inputs we proved that the
convergence rate is then a function of the total receptive
field, in other words the compositionality allows for a
faster convergence. In the non-linear situation, we nu-
merically showed that when using a non-bounded ReLU
activation, a larger number of layers seems to result in a
larger discrepancy, while for the hyperbolic tangent and
sigmoid activation functions the discrepancy remains rel-
atively small even when the number of layers increases.
This could mean that the total receptive field of the CNN
does play a role in the convergence, so that adding more
layers, unlike in a feedforward neural network, does not
necessarily give a larger discrepancy with the GP. Never-
theless, a question remaining for further research is prov-
ing this convergence rate in the non-linear setting rig-
orously in the convolutional network, in order to obtain
complete results on the effects of the total receptive field
of the network on the GP behavior and how this depends
on the particular type of activation function used as well
as the properties of the data itself.

Concluding, casting the network into a known frame-
work such as the GPs provides interesting insights into
the workings of the CNN, such as its distribution and the
properties that can allow its output distribution to devi-
ate from a Gaussian and learn other, more complex dis-
tributions. This work was to the best of our knowledge
the first attempt at doing so for the convolutional network
structure, which possesses a very different structure com-
pared to the feedforward neural network. In this way for
example the recently obtained results on how to sample
from the posterior distribution using stochastic gradient
descent [Mandt et al., 2017] might differ for the two net-
works. We hope that illustrating the similarities between
CNNs and particular GPs our results will further research
in both of these areas.
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