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Abstract

We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Lévy-

type martingale. This class of models allows for a local volatility, local default intensity and a locally

dependent Lévy measure. We present a pricing method for Bermudan options based on an analytical ap-

proximation of the characteristic function combined with the COS method. Due to a special form of the

obtained characteristic function the price can be computed using a fast Fourier transform-based algorithm

resulting in a fast and accurate calculation. The Greeks can be computed at almost no additional computa-

tional cost. Error bounds for the approximation of the characteristic function as well as for the total option

price are given.

Keywords: Bermudan option, local Lévy model, defaultable asset, asymptotic expansion, Fourier-cosine

expansion

1. Introduction

In financial mathematics, the fast and accurate pricing of financial derivatives is an important branch of

research. Depending on the type of financial derivative, the mathematical task is essentially the computation

of integrals, and this sometimes needs to be performed in a recursive way in a time-wise direction. For many

stochastic processes that model the financial assets, these integrals can be most efficiently computed in the

Fourier domain. However, for some relevant and recent stochastic models the Fourier domain computations

are not at all straightforward, as these computations rely on the availability of the characteristic function

of the stochastic process (read: the Fourier transform of the transitional probability distribution), which is

not known. This is especially true for state-dependent asset price processes, and for asset processes that

include the notion of default in their definition. With the derivations and techniques in the present paper

we make available the highly efficient pricing of so-called Bermudan options to the above mentioned classes

of state-dependent asset dynamics, including jumps in asset prices and the possibility of default. In this

sense, the class of asset models for which Fourier option pricing is highly efficient increases by the contents

of the present paper. Essentially, we approximate the characteristic function by an advanced Taylor-based
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expansion in such a way that the resulting characteristic function exhibits favorable properties for the pricing

methods.

Fourier methods have often been among the winners in option pricing competitions such as BENCHOP

[16]. In [5], a Fourier method called the COS method, as introduced in [4], was extended to the pricing

of Bermudan options. The computational efficiency of the method was based on a specific structure of the

characteristic function allowing to use the fast Fourier transform (FFT) for calculating the continuation

value of the option. Fourier methods can readily be applied to solving problems under asset price dynamics

for which the characteristic function is available. This is the case for exponential Lévy models, such as

the Merton model developed in [13], the Variance-Gamma model developed in [12], but also for the Heston

model [6]. However, in the case of local volatility, default and state-dependent jump measures there is no

closed form characteristic function available and the COS method can not be readily applied.

Recently, in [14] the so-called adjoint expansion method for the approximation of the characteristic func-

tion in local Lévy models is presented. This method is worked out in the Fourier space by considering the

adjoint formulation of the pricing problem, that is using a backward parametrix expansion as was also later

done in [1]. In this paper we generalize this method to include a defaultable asset whose risk-neutral pricing

dynamics are described by an exponential Lévy-type martingale with a state-dependent jump measure, as

has also been considered in [11] and in [7].

Having obtained the analytical approximation for the characteristic function we combine this with the

COS method for Bermudan options. We show that this analytical formula for the characteristic function still

possesses a structure that allows the use of a FFT-based method in order to calculate the continuation value.

This results in an efficient and accurate computation of the Bermudan option value and of the Greeks. The

characteristic function approximation used in the COS method is already very accurate for the 2nd-order

approximation, meaning that the explicit formulas are simple and this makes method easy and quick to

implement. We prove error bounds for the 0th- and 1st-order approximation, justifying the accuracy of the

method and present a wide range of numerical examples, showing the flexibility, accuracy and speed of the

method.

2. General framework

We consider a defaultable asset S whose risk-neutral dynamics are given by:

St = 1{t<ζ}e
Xt ,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫
R
dÑt(t,Xt−, dz)z,

dÑt(t,Xt−, dz) = dNt(t,Xt−, dz)− ν(t,Xt−, dz)dt,

ζ = inf{t ≥ 0 :

∫ t

0

γ(s,Xs)ds ≥ ε}, (2.1)

where Ñt(t, x, dz) is a compensated random measure with state-dependent Lévy measure ν(t, x, dz). The

default time ζ of S is defined in a canonical way as the first arrival time of a doubly stochastic Poisson
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process with local intensity function γ(t, x) ≥ 0, and ε ∼ Exp(1) and is independent of X. Thus the model

features:

• a local volatility function σ(t, x);

• a local Lévy measure: jumps in X arrive with a state-dependent intensity described by the local Lévy

measure ν(t, x, dz). The jump intensity and jump distribution can thus change depending on the

value of x. A state-dependent Lévy measure is an important feature because it allows to incorporate

stochastic jump-intensity into the modeling framework;

• a local default intensity γ(t, x): the asset S can default with a state-dependent default intensity.

This way of modeling default is also considered in a diffusive setting in [3] and for exponential Lévy models

in [2].

We define the filtration of the market observer to be G = FX ∨FD, where FX is the filtration generated

by X and FDt := σ({ζ ≤ u}, u ≤ t), for t ≥ 0, is the filtration of the default. We assume∫
R
e|z|ν(t, x, dz) <∞,

and by imposing that the discounted asset price S̃t := e−rtSt is a G-martingale, we get the following

restriction on the drift coefficient:

µ(t, x) = γ(t, x) + r − σ2(t, x)

2
−
∫
R
ν(t, x, dz)(ez − 1− z).

Is it well-known (see, for instance, [8, Section 2.2]) that the price V of a European option with maturity T

and payoff Φ(ST ) is given by

Vt = 1{ζ>t}e
−r(T−t)E

[
e−

∫ T
t
γ(s,Xs)dsϕ(XT )|Xt

]
, t ≤ T, (2.2)

where ϕ(x) = Φ(ex). Thus, in order to compute the price of an option, we must evaluate functions of the

form

u(t, x) := E
[
e−

∫ T
t
γ(s,Xs)dsϕ(XT )|Xt = x

]
. (2.3)

Under standard assumptions, u can be expressed as the classical solution of the following Cauchy problemLu(t, x) = 0, t ∈ [0, T [, x ∈ R,

u(T, x) = ϕ(x), x ∈ R,

where L is the integro-differential operator

Lu(t, x) = ∂tu(t, x) + r∂xu(t, x) + γ(t, x)(∂xu(t, x)− u(t, x)) +
σ2(t, x)

2
(∂xx − ∂x)u(t, x)

−
∫
R
ν(t, x, dz)(ez − 1− z)∂xu(t, x) +

∫
R
ν(t, x, dz)(u(t, x+ z)− u(t, x)− z∂xu(t, x)). (2.4)
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The function u in (2.3) can be represented as an integral with respect to the transition distribution of the

defaultable log-price process logS:

u(t, x) =

∫
R
ϕ(y)Γ(t, x;T, dy). (2.5)

Here we notice explicitly that Γ(t, x;T, dy) is not necessarily a standard probability measure because its

integral over R can be strictly less than one; nevertheless, with a slight abuse of notation, we say that its

Fourier transform

Γ̂(t, x;T, ξ) := F(Γ(t, x;T, ·))(ξ) :=

∫
R
eiξyΓ(t, x;T, dy), ξ ∈ R,

is the characteristic function of logS.

2.1. Adjoint expansion of the characteristic function

In this section we generalize the results in [14] to our framework and develop an expansion of the coeffi-

cients

a(t, x) :=
σ2(t, x)

2
, γ(t, x), ν(t, x, dz),

around some point x̄. The coefficients a(t, x), γ(t, x) and ν(t, x, dz) are assumed to be continuously differ-

entiable with respect to x up to order N ∈ N.

From now on for simplicity we assume that the coefficients are independent of t (see Remark 2.2 for the

general case). First we introduce the nth-order approximation of L in (2.4):

Ln = L0 +

n∑
k=1

(
(x− x̄)kak(∂xx − ∂x) + (x− x̄)kγk∂x − (x− x̄)kγk

−
∫
R

(x− x̄)kνk(dz)(ez − 1− z)∂x +

∫
R

(x− x̄)kνk(dz)(ez∂x − 1− z∂x)
)
,

where

L0 = ∂t + r∂x + a0(∂xx − ∂x) + γ0∂x − γ0 −
∫
R
ν0(dz)(ez − 1− z)∂x +

∫
R
ν0(dz)(ez∂x − 1− z∂x),

and

ak =
∂kxa(x̄)

k!
, γk =

∂kxγ(x̄)

k!
, νk(dz) =

∂kxν(x̄, dz)

k!
, k ≥ 0.

The basepoint x̄ is a constant parameter which can be chosen freely. In general the simplest choice is x̄ = x

(the value of the underlying at initial time t): we will see that in this case the formulas for the Bermudan

option valuation are simplified.

Let us assume for a moment that L0 has a fundamental solution G0(t, x;T, y) that is defined as the

solution of the Cauchy problemL0G
0(t, x;T, y) = 0 t ∈ [0, T [, x ∈ R,

G0(T, ·;T, y) = δy.
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In this case we define the nth-order approximation of Γ as

Γ(n)(t, x;T, y) =

n∑
k=0

Gk(t, x;T, y),

where, for any k ≥ 1 and (T, y), Gk(·, ·;T, y) is defined recursively through the following Cauchy problem
L0G

k(t, x;T, y) = −
k∑
h=1

(Lh − Lh−1)Gk−h(t, x;T, y) t ∈ [0, T [, x ∈ R,

Gk(T, x;T, y) = 0, x ∈ R.

Notice that

Lh − Lh−1 = (x− x̄)hah(∂xx − ∂x) + (x− x̄)hγh∂x − (x− x̄)hγh

−
∫
R
(x− x̄)hνh(dz)(ez − 1− z)∂x +

∫
R

(x− x̄)hνh(dz)(ez∂x − 1− z∂x).

Correspondingly, the nth-order approximation of the characteristic function Γ̂ is defined to be

Γ̂(n)(t, x;T, ξ) =

n∑
k=0

F
(
Gk(t, x;T, ·)

)
(ξ) :=

n∑
k=0

Ĝk(t, x;T, ξ), ξ ∈ R. (2.6)

Now we remark that the operator L acts on (t, x) while the characteristic function is a Fourier transform

taken with respect to y: in order to take advantage of such a transformation, in the following theorem we

characterize Γ̂(n) in terms of the Fourier transform of the adjoint operator L̃ = L̃(T,y) of L, acting on (T, y).

Theorem 2.1 (Dual formulation). For any (t, x) ∈]0, T ]×R, the function G0(t, x; ·, ·) is defined through the

following dual Cauchy problemL̃
(T,y)
0 G0(t, x;T, y) = 0 T > t, y ∈ R,

G0(T, x;T, ·) = δx.
(2.7)

where

L̃
(T,y)
0 = −∂T − r∂y + a0(∂yy + ∂y)− γ0∂y − γ0 +

∫
R
ν0(dz)(ez − 1− z)∂y +

∫
R
ν̄0(dz)(ez∂y − 1− z∂y).

Moreover, for any k ≥ 1, the function Gk(t, x; ·, ·) is defined through the dual Cauchy problem as follows:
L̃

(T,y)
0 Gk(t, x;T, y) = −

k∑
h=1

(
L̃

(T,y)
h − L̃(T,y)

h−1

)
Gk−h(t, x;T, y) T > t, y ∈ R,

Gk(T, x;T, y) = 0 y ∈ R,
(2.8)

with

L̃
(T,y)
h − L̃(T,y)

h−1 = ahh(h− 1)(y − x̄)h−2 + ah(y − x̄)h−1 (2h∂y + (y − x̄)(∂yy + ∂y) + h)

− γhh(y − x̄)h−1 − γh(y − x̄)h (∂y + 1)

+

∫
R
νh(dz)(ez − 1− z)

(
h(y − x̄)h−1 + (y − x̄)h∂y

)
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+

∫
R
ν̄h(dz)

(
(y + z − x̄)hez∂y − (y − x̄)h − z

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
,

where in defining the adjoint of the operator we use the notation

ez∂yf(y) :=

∞∑
n=0

zn

n!
∂ny f(y) = f(y + z).

Notice that the adjoint Cauchy problems (2.7) and (2.8) admit a solution in the Fourier space and can be

solved explicitly; in fact, we have

F
(
L̃

(T,·)
0 Gk(t, x;T, ·)

)
(ξ) = ψ(ξ)Ĝk(t, x;T, ξ)− ∂T Ĝk(t, x;T, ξ),

where ψ(ξ) is the characteristic exponent of the Lévy process with coefficients γ0, a0 and ν0(dz), that is

ψ(ξ) = iξ(r + γ0) + a0(−ξ2 − iξ)− γ0 −
∫
R
ν0(dz)(ez − 1− z)iξ +

∫
R
ν0(dz)(eizξ − 1− izξ).

Thus the solution (in the Fourier space) to problems (2.7) and (2.8) is given by

Ĝ0(t, x;T, ξ) = eiξx+(T−t)ψ(ξ),

Ĝk(t, x;T, ξ) = −
∫ T

t

eψ(ξ)(T−s)F

(
k∑
h=1

(
L̃

(s,·)
h − L̃(s,·)

h−1

)
Gk−h(t, x; s, ·)

)
(ξ)ds, k ≥ 1.

(2.9)

Now we consider the general framework and in particular we drop the assumption on the existence of the

fundamental solution of L0: in this case, we define the nth-order approximation of the characteristic function

Γ̂ as in (2.6), with Ĝk given by (2.9). We also notice that

F
((
L̃

(s,·)
h − L̃(s,·)

h−1

)
u(s, ·)

)
(ξ) =(

ahh(h− 1)(−i∂ξ − x̄)h−2 + ah(−i∂ξ − x̄)h−1
(
−2hiξ + (−i∂ξ − x̄)(−ξ2 − iξ) + h

))
û(s, ξ)

−
(
γhh(−i∂ξ − x̄)h−1 − γh(−i∂ξ − x̄)h (iξ − 1)

)
û(s, ξ)

+

∫
R
νh(dz)(ez − 1− z)

(
h(−i∂ξ − x̄)h−1 − (−i∂ξ − x̄)hiξ

)
û(s, ξ)

+

∫
R
νh(dz)

(
(−i∂y − z − x̄)heiξz − (−i∂y − x̄)h + z

(
h(−i∂ξ − x̄)h−1 − (−i∂ξ − x̄)hiξ

))
û(s, ξ).

Remark 2.2. In case the coefficients γ, σ, ν depend on time, the solutions to the Cauchy problems are

similar:

Ĝ0(t, x;T, ξ) = eiξxe
∫ T
t
ψ(s,ξ)ds,

Ĝk(t, x;T, ξ) = −
∫ T

t

e
∫ T
s
ψ(τ,ξ)dτF

(
k∑
h=1

(
L̃

(s,·)
h (s)− L̃(s,·)

h−1(s)
)
Gk−h(t, x; s, ·)

)
(ξ)ds,

with

ψ(s, ξ) = iξ(r + γ0(s)) + a0(s)(−ξ2 − iξ)−
∫
R
ν0(s, dz)(ez − 1− z)iξ +

∫
R
ν0(s, dz)(eizξ − 1− izξ),

L̃
(s,y)
h (s)− L̃(s,y)

h−1 (s) = ah(s)h(h− 1)(y − x̄)h−2 + ah(s)(y − x̄)h−1 (2h∂y + (y − x̄)(∂yy + ∂y) + h)
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− γh(s)h(y − x̄)h−1 − γh(s)(y − x̄)h (∂y + 1)

+

∫
R
νh(s, dz)(ez − 1− z)

(
h(y − x̄)h−1 + (y − x̄)h∂y

)
+

∫
R
ν̄h(s, dz)

(
(y + z − x̄)hez∂y − (y − x̄)h − z

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
.

From these results one can already see that the dependency on x comes in through eiξx and after taking

derivatives the dependency on x will take the form (x− x̄)meiξx: this fact will be crucial in our analysis.

Example 2.3. To see the above dependency more explicitly for the second-order approximation of the

characteristic function we consider, for ease of notation, a simplified model: a one-dimensional local Lévy

model where the log-price solves the SDE

dXt = µ(Xt)dt+ σ(Xt)dWt +

∫
R
dÑt(dz)z. (2.10)

This model is a simplification of the original model, since we consider only a local volatility function, and

no local default or state-dependent Lévy measure. Thus only a Taylor expansion of the local volatility

coefficient is used. However, the dependency that we will see generalizes in the same way to the local default

and state-dependent measure. By the martingale condition we have

µ(x) = r − a(x)−
∫
R
ν(dz)(ez − 1),

and therefore the Kolmogorov operator of (2.10) reads

Lu(t, x) = ∂tu(t, x) + r∂xu(t, x) + a(t, x)(∂xx − ∂x)u(t, x)

−
∫
R
ν(dz)(ez − 1) +

∫
R
ν(dz) (u(t, x+ z)− u(t, x)) .

In this case, we have the following explicit approximation formulas for the characteristic function Γ̂(t, x;T, ξ):

Γ̂(t, x;T, ξ) ≈ Γ̂(n)(t, x;T, ξ) := eiξx+(T−t)ψ(ξ)
n∑
k=0

F̂ k(t, x;T, ξ), n ≥ 0, (2.11)

with

ψ(ξ) = irξ − a0(ξ2 + iξ)−
∫
R
ν(dz)(ez − 1)iξ +

∫
R
ν(dz)

(
eizξ − 1

)
,

and

F̂ k(t, x;T, ξ) =

k∑
h=0

g
(k)
h (T − t, ξ)(x− x̄)h; (2.12)

here, for k = 0, 1, 2, we have

g
(0)
0 (s, ξ) = 1,

g
(1)
0 (s, ξ) = a1s

2(ξ2 + iξ)
i

2
ψ′(ξ),

g
(1)
1 (s, ξ) = − a1s(ξ

2 + iξ),
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g
(2)
0 (s, ξ) =

1

2
s2a2ξ(i+ ξ)ψ′′(ξ)− 1

6
s3ξ(i+ ξ)(a2

1(i+ 2ξ)ψ′(ξ)− 2a2ψ
′(ξ)2 + a2

1ξ(i+ ξ)ψ′′(ξ))

− 1

8
s4a2

1ξ
2(i+ ξ)2ψ′(ξ)2,

g
(2)
1 (s, ξ) =

1

2
s2ξ(i+ ξ)(a2

1(1− 2iξ) + 2ia2ψ
′′(ξ))− 1

2
s3ia2

1ξ
2(i+ ξ)2ψ′′(ξ),

g
(2)
2 (s, ξ) = − a2sξ(i+ ξ) +

1

2
s2a2

1ξ
2(i+ ξ)2.

Using the notation from above, we can write in the same way the approximation formulas for the general

case. Here we present the results for k = 0, 1, since higher-order formulas are too long to include. For the

full formula we refer to Appendix Appendix B. We have:

g
(0)
0 (s, ξ) =1,

g
(1)
0 (s, ξ) =

i

2
a1s

2(ξ2 + iξ)ψ′(ξ) +
1

2
γ1s

2(i+ ξ)ψ′(ξ)− 1

2

∫
R
ν1(dz)(ez − 1− z)s2ξψ′(ξ) (2.13)

− 1

2

∫
R
ν1(dz)(ieiξz − i+ ξz)s2ψ′(ξ),

g
(1)
1 (s, ξ) =− a1s(ξ

2 + iξ) + γ1si(i+ ξ)−
∫
R
ν1(dz)(ez − 1− z)sξi

+

∫
R
ν1(dz)(eiξz − 1− ξiz)s.

Remark 2.4. From (2.11)-(2.12) we clearly see that the approximation of order n is a function of the form

Γ̂(n)(t, x;T, ξ) := eiξx
n∑
k=0

(x− x̄)kgn,k(t, T, ξ), (2.14)

where the coefficients gn,k, with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x. The approximation

formula can thus always be split into a sum of products of functions depending only on ξ and functions that

are linear combinations of (x− x̄)meiξx, m ∈ N0.

3. Bermudan option valuation

A Bermudan option is a financial contract in which the holder can exercise at a predetermined finite set of

exercise moments prior to maturity, and the holder of the option receives a payoff when exercising. Consider

a Bermudan option with a set of M exercise moments {t1, ..., tM}, with 0 ≤ t1 < t2 < · · · < tM = T . When

the option is exercised at time tm the holder receives the payoff Φ (tm, Stm). Recalling (2.2), the no-arbitrage

value of the Bermudan option at time t is

v (t,Xt) = 1{ζ>t} sup
τ∈Tt

E
[
e−

∫ τ
t

(r+γ(s,Xs))dsϕ(τ,Xτ )|Xt

]
,

where ϕ(t, x) = Φ(t, ex) and Tt is the set of all G-stopping times taking values in {t1, ..., tM} ∩ [t, T ]. For a

Bermudan put option with strike priceK, we simply have ϕ(t, x) = (K − ex)
+

. By the dynamic programming

approach, the option value can be expressed by a backward recursion as

v(tM , x) = 1{ζ>tM}ϕ(tM , x)
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and c(t, x) = E
[
e−

∫ tm
t

(r+γ(s,Xs))dsv(tm, Xtm)|Xt = x
]
, t ∈ [tm−1, tm[

v(tm−1, x) = 1{ζ>tm−1}max{ϕ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.
(3.15)

In the above notation v(t, x) is the option value and c(t, x) is the so-called continuation value. The option

value is set to be v(t, x) = c(t, x) for t ∈ ]tm−1, tm[, and, if t1 > 0, also for t ∈ [0, t1[.

Remark 3.5. Since the payoff of a call option grows exponentially with the log-stock price, this may

introduce significant cancellation errors for large domain sizes. For this reason we price put options only

using our approach and we employ the well-known put-call parity to price calls via puts. This is a rather

standard argument (see, for instance, [17]).

3.1. An algorithm for pricing Bermudan put options

The COS method proposed by [5] is based on the insight that the Fourier-cosine series coefficients of

Γ(t, x;T, dy) (and therefore also of option prices) are closely related to the characteristic function of the

underlying process, namely the following relationship holds:∫ b

a

ei
kπ
b−aΓ(t, x;T, dy) ≈ Γ̂

(
t, x;T,

kπ

b− a

)
.

The COS method provides a way to calculating expected values (integrals) of the form

v(t, x) =

∫
R
ϕ(T, y)Γ(t, x;T, dy),

and it consists of three approximation steps:

1. In the first step we truncate the infinite integration range to [a, b] to obtain approximation v1:

v1(t, x) :=

∫ b

a

ϕ(T, y)Γ(t, x;T, dy).

We assume this can be done due to the rapid decay of the distribution at infinity.

2. In the second step we replace the distribution with its cosine expansion and we get

v1(t, x) :=
b− a

2

∞∑′

k=0

Ak(t, x;T )Vk(T ),

where
∑′

indicates that the first term in the summation is weighted by one-half and

Ak(t, x;T ) =
2

b− a

∫ b

a

cos

(
kπ
y − a
b− a

)
Γ(t, x;T, dy),

Vk(T ) =
2

b− a

∫ b

a

cos

(
kπ
y − a
b− a

)
ϕ(T, y)dy,

are the Fourier-cosine series coefficients of the distribution and of the payoff function at time T respec-

tively. Due to the rapid decay of the Fourier-cosine series coefficients, we truncate the series summation

and obtain approximation v2:

v2(t, x) :=
b− a

2

N−1∑′

k=0

Ak(t, x;T )Vk(T ).

9



3. In the third step we use the fact that the coefficients Ak can be rewritten using the truncated charac-

teristic function:

Ak(t, x;T ) =
2

b− a
Re

(
e−ikπ

a
b−a

∫ b

a

ei
kπ
b−ayΓ(t, x;T, dy)

)
.

The finite integration range can be approximated as∫ b

a

ei
kπ
b−ayΓ(t, x;T, dy) ≈

∫
R
ei

kπ
b−ayΓ(t, x;T, dy) = Γ̂

(
t, x;T,

kπ

b− a

)
.

Thus in the last step we replace Ak by its approximation:

2

b− a
Re

(
e−ikπ

a
b−a Γ̂

(
t, x;T,

kπ

b− a

))
,

and obtain approximation v3:

v3(t, x) :=

N−1∑′

k=0

Re

(
e−ikπ

a
b−a Γ̂

(
t, x;T,

kπ

b− a

))
Vk(T ). (3.16)

Next we go back to the Bermudan put pricing problem. Remembering that the expected value c(t, x) in

(3.15) can be rewritten in integral form as in (2.5), we have

c(t, x) = e−r(tm−t)
∫
R
v(tm, y)Γ(t, x; tm, dy), t ∈ [tm−1, tm[.

Then we use the Fourier-cosine expansion (3.16), so that we get the approximation:

ĉ(t, x) = e−r(tm−t)
N−1∑′

k=0

Re

(
e−ikπ

a
b−a Γ̂

(
t, x; tm,

kπ

b− a

))
Vk(tm), t ∈ [tm−1, tm[ (3.17)

Vk(tm) =
2

b− a

∫ b

a

cos

(
kπ
y − a
b− a

)
max{ϕ(tm, y), c(tm, y)}dy,

with ϕ(t, x) = (K − ex)
+

.

Next we recover the coefficients (Vk(tm))k=0,1,...,N−1 from (Vk(tm+1))k=0,1,...,N−1. To this end, we split

the integral in the definition of Vk(tm) into two parts using the early-exercise point x∗m, which is the point

where the continuation value is equal to the payoff, i.e. c(tm, x
∗
m) = ϕ(tm, x

∗
m); thus we have

Vk(tm) = Fk(tm, x
∗
m) + Ck(tm, x

∗
m), m = M − 1,M − 2, ..., 1,

where

Fk(tm, x
∗
m) :=

2

b− a

∫ x∗
m

a

ϕ(tm, y) cos

(
kπ
y − a
b− a

)
dy,

Ck(tm, x
∗
m) :=

2

b− a

∫ b

x∗
m

c(tm, y) cos

(
kπ
y − a
b− a

)
dy,

(3.18)

and Vk(tM ) = Fk(tM , logK).
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Remark 3.6. Since we have a semi-analytic formula for ĉ(tm, x), we can easily find the derivatives with

respect to x and use Newton’s method to find the point x∗m such that c(tm, x
∗
m) = ϕ(tm, x

∗
m). A good

starting point for the Newton method is logK, since x∗m ≤ logK.

The coefficients Fk(tm, x
∗
m) can be computed analytically using x∗m ≤ logK, so that we have

Fk(tm, x
∗
m) =

2

b− a

∫ x∗
m

a

(K − ey) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a
KΨk(a, x∗m)− 2

b− a
χk(a, x∗m),

where

χk(a, x∗m) =

∫ x∗
m

a

ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

(
ex

∗
m cos

(
kπ
x∗m − a
b− a

)
− ea +

kπex
∗
m

b− a
sin

(
kπ
x∗m − a
b− a

))
,

Ψk(a, x∗m) =

∫ x∗
m

a

cos

(
kπ
y − a
b− a

)
dy =


b−a
kπ sin

(
kπ

x∗
m−a
b−a

)
, k 6= 0,

x∗m − a, k = 0.

On the other hand, by inserting the approximation (3.17) for the continuation value into the formula for

Ck(tm, x
∗
m) have the following coefficients Ĉk for m = M − 1,M − 2, ..., 1:

Ĉk(tm, x
∗
m) =

2e−r(tm+1−tm)

b− a

N−1∑′

j=0

Vj(tm+1)

∫ b

x∗
m

Re

(
e−ijπ

a
b−a Γ̂

(
tm, x; tm+1,

jπ

b− a

))
cos

(
kπ
x− a
b− a

)
dx.

(3.19)

Thus the algorithm for pricing Bermudan options can then be summarized as follows:

Figure 1: Algorithm 3.1: Bermudan option valuation

1. For k = 0, 1, ..., N − 1:

• At time tM , the coefficients are exact: Vk(tM ) = Fk(tM , logK), as in (3.18).

2. For m = M − 1 to 1:

• Determine the early-exercise point x∗m using Newton’s method;

• Compute V̂k(tm) using formula V̂k(tm) := Fk(tm, x
∗
m) + Ĉk(tm, x

∗
m), (3.18) and (3.19). Use

an FFT for the continuation value (see Section 3.2).

3. Final step: using V̂k(t1) determine the option price v̂(0, x) = ĉ(0, x) using (3.17).

3.2. An efficient algorithm for the continuation value

In this section we derive an efficient algorithm for calculating Ĉk(tm, x
∗
m) in (3.19). When considering an

exponential Lévy process with constant coefficients as done in [5], the continuation value can be calculated
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using a Fast Fourier Transform (FFT). This can be done due to the fact that the characteristic function

Γ̂(t, x;T, ξ) can be split into a product of a function depending only on ξ and a function of the form eiξx.

Note that we typically have ξ = jπ
b−a . The integration over x results in a sum of a Hankel and Toeplitz matrix

(with indices (j + k) and (j − k) respectively). The matrix-vector product, with these special matrices, can

be transformed into a circular convolution which can be computed using FFTs.

From (2.14) we know that the nth-order approximation of the characteristic function is of the form:

Γ̂(n)(tm, x; tm+1, ξ) = eiξx
n∑
k=0

(x− x̄)kgn,k(tm, tm+1, ξ),

where the coefficients gn,k(t, T, ξ), with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x. Using (2.14)

we write the continuation value as:

Ĉk(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)

N−1∑′

j=0

Re

(
Vj(tm)gn,h

(
tm, tm+1,

jπ

b− a

)
Mh
k,j(x

∗
m, b)

)
,

where we have interchanged the sums and integral and defined:

Mh
k,j(x

∗
m, b) =

2

b− a

∫ b

x∗
m

eijπ
x−a
b−a (x− x̄)h cos

(
kπ
x− a
b− a

)
dx (3.20)

This can be written in vectorized form as:

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(
V(tm+1)Mh(x∗m, b)Λ

h
)
,

where V(tm+1) is the vector [V0(tm+1), ..., VN−1(tm+1)]T andMh(x∗m, b)Λ
h is a matrix-matrix product with

Mh being a matrix with elements {Mh
k,j}

N−1
k,j=0 and Λh is a diagonal matrix with elements

gn,h

(
tm, tm+1,

jπ

b− a

)
, j = 0, . . . , N − 1.

We have the following theorem for calculating a generalized form of the integral in (3.20) which is used in

the calculation of the continuation value.

Theorem 3.7. The matrix M with elements {Mk,j}N−1
k,j=0 such that:

Mk,j =

∫
ejx cos(kx)xmdx,

consists of sums of Hankel and Toeplitz matrices.

Proof. Using standard trigonometric identities we can rewrite the integral as:

Mk,j =

∫
cos(jx) cos(kx)xmdx+ i

∫
sin(jx) cos(kx)xmdx

= MH
k,j + iMT

k,j ,

where we have defined:

MH
k,j =

1

2

∫
cos((j + k)x)xmdx+

1

2

∫
sin((j + k)x)xmdx,

12



MT
k,j =

1

2

∫
cos((j − k)x)xmdx+

1

2

∫
sin((j − k)x)xmdx.

The following holds:

∫
cos(nx)xmdx =

1

n
xm sin(nx) +

dm/2e∑
i=1

(−1)i+1

∏2i−2
j=0 (m− j)

n2i
cos(nx)xm−(2i−1)

−
bm/2c∑
i=1

(−1)i+1

∏2i−1
j=0 (m− j)
n2i+1

sin(nx)xm−2i,

∫
sin(nx)xmdx = − 1

n
xm cos(nx) +

dm/2e∑
i=1

(−1)i+1

∏2i−2
j=0 (m− j)

n2i
sin(nx)xm−(2i−1)

−
bm/2c∑
i=1

(−1)i+1

∏2i−1
j=0 (m− j)
n2i+1

cos(nx)xm−2i.

It follows that {MH
k,j}N−1

k,j=0 is a Hankel matrix with coefficient (j + k) and {MT
k,j}N−1

k,j=0 is a Toeplitz matrix

with coefficient (j − k):

MH =



M0 M1 M2 . . . MN−1

M1 M2 . . . MN

...
...

MN−2 MN−1 . . . M2N−3

MN−1 . . . M2N−3 M2N−2


,

MT =



M0 M1 . . . MN−2 MN−1

M−1 M0 M1 . . . MN−2

...
. . .

...

M2−N . . . M−1 M0 M1

M1−N M2−N M−1 M0


,

where we have defined

Mj =
1

2

∫
cos(jx)xmdx+

1

2

∫
sin(jx)xmdx.

From Theorem 3.7 we see thatMh(x∗m, b) with elements Mh
k,j consists of a sum of a Hankel and Toeplitz

matrix.

Example 3.8. We derive explicitly the Hankel and Toeplitz matrices for m = 0 and m = 1. We calculate

the indefinite integral

Mk,j =
2

b− a

∫
eijπ

x−a
b−a cos

(
kπ
x− a
b− a

)
(x− x̄)mdx.

13



Suppose m = 0, in this case we have Mk,j = MH
k,j +MT

k,j , with:

MH
k,j = −

i exp
(
i (j+k)π(x−a)

b−a

)
π(j + k)

,

MT
k,j = −

i exp
(
i (j−k)π(x−a)

b−a

)
π(j − k)

,

where {MH
k,j}N−1

k,j=0 is a Hankel matrix and {MT
k,j}N−1

k,j=0 is a Toeplitz matrix with

Mj =


x
b−a , j = 0,

− i exp(i jπ(x−a)
b−a )

πj , j 6= 0.

Suppose m = 1, in this case we have:

MH
k,j = − a− b

(j − k)2π2
exp

(
i(j − k)π

(x− a)

b− a

)
− x− x̄

(j − k)π
i exp

(
i(j − k)π

(x− a)

b− a

)
,

MT
k,j = − a− b

(j + k)2π2
exp

(
i(j + k)π

(x− a)

b− a

)
− x− x̄

(j + k)π
i exp

(
i(j + k)π

(x− a)

b− a

)
,

where {MH
k,j}N−1

k,j=0 is a Hankel matrix and {MT
k,j}N−1

k,j=0 is a Toeplitz matrix, with

Mj =


x(x−x̄)
b−a , j = 0,

− a−b
j2π2 exp

(
ijπ (x−a)

b−a

)
− x−x̄

jπ i exp
(
ijπ (x−a)

b−a

)
, j 6= 0.

Remark 3.9. If we take x̄ = x, which is most common in practice, the formulas are simplified significantly

and only the case of m = 0 is relevant. In this case the characteristic function is simply eiξx times a sum of

terms depending only on tm, tm+1 and ξ = jπ
b−a :

Γ̂(n)(tm, x; tm+1, ξ) = eiξxgn,0(tm, tm+1, ξ).

Using the split into sums of Hankel and Toeplitz matrices we can write the continuation value in matrix

form as:

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(
(Mh

H +Mh
T )uh

)
,

where Mh
H = {MH,h

k,j (x∗m, b)}N−1
k,j=0 is a Hankel matrix and Ml

T = {MT,h
k,j (x∗m, b)}N−1

k,j=0 is a Toeplitz matrix

and uh = {uhj }
N−1
j=0 , with uhj = gn,h

(
tm, tm+1,

jπ
b−a

)
Vj(tm+1) and uh0 = 1

2gn,h (tm, tm+1, 0)V0(tm+1).

We recall that the circular convolution, denoted by ~, of two vectors is equal to the inverse discrete

Fourier transform (D−1) of the products of the forward DFTs, D, i.e.:

x~ y = D−1{D(x) · D(y)}.

For Hankel and Toeplitz matrices we have the following result:
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Theorem 3.10. For a Toeplitz matrix MT , the product MTu is equal to the first N elements of mT ~uT ,

where mT and uT are 2N vectors defined by

mT = [M0,M−1,M−2, ...,M1−N , 0,MN−1,MN−2, ...,M1]T ,

uT = [u0, u1, ..., uN−1, 0, ..., 0]T .

For a Hankel matrix MH , the product MHu is equal to the first N elements of mH ~uH in reversed order,

where mH and uH are 2N vectors defined by

mH = [M2N−1,M2N−2, ...,M1,M0]T

uH = [0, ..., 0, u0, u1, ..., uN−1]T .

Summarizing, we can calculate the continuation value Ĉ(tm, x
∗
m) using the algorithm in Figure 3.2.

Figure 2: Algorithm 3.2: Computation of Ĉ(tm, x∗
m)

1. For h = 0, ..., n:

• Compute Mh
j (x1, x2)

• Construct mh
H and mh

T

• Compute uh(tm) = {uhj }
N−1
j=0

• Construct uhT by padding N zeros to uh(tm)

• MTuh = the first N elements of D−1{D(mh
T ) · D(uhT )}

• MHuh = reverse{the first N elements of D−1{D(mh
H) · sgn · D(uhT )}}

2. Compute the continuation value using Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re(MTuh + MHuh).

The continuation value requires five DFTs for each h = 0, ..., n, and a DFT is calculated using the FFT.

In practice it is most common to have x̄ = x and in this case we only need five FFTs. The computation

of Fk(tm, x
∗
m) is linear in N . The overall complexity of the method is dominated by the computation of

Ĉ(tm, x
∗
m), whose complexity is O(N log2N) with the FFT. The complexity of the calculation for option

value at time 0 is O(N). If we have a Bermudan option with M exercise dates, the overall complexity will

be O((M − 1)N log2N).

Remark 3.11 (American options). The prices of American options can be obtained by applying a

Richardson extrapolation (see, for instance, [9]) on the prices of a few Bermudan options with a small

number of exercise dates. Let vM denote the value of a Bermudan option with maturity T and a number

M of early exercise dates that are T
M years apart. Then, for any d ∈ N, the following 4-point Richardson

extrapolation scheme
1

21
(64v2d+3 − 56v2d+2 + 14v2d+1 − v2d)

gives an approximation of the corresponding American option price.
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Remark 3.12 (The Greeks). The approximation method can also be used to calculate the Greeks at

almost no additional cost. In the case of x̄ = x, we have the following approximation formulas for Delta and

Gamma:

∆̂ = e−r(t1−t0)

N−1∑′

k=0

Re

(
eikπ

x−a
b−a

(
ikπ

b− a
gn,0

(
t0, t1,

kπ

b− a

)
+ gn,1

(
t0, t1,

kπ

b− a

)))
V̂k(t1),

Γ̂ = e−r(t1−t0)

N−1∑′

k=0

Re

(
eikπ

x−a
b−a

(
− ikπ

b− a
gn,0

(
t0, t1,

kπ

b− a

)
− gn,1

(
t0, t1,

kπ

b− a

)

+ 2
ikπ

b− a
gn,1

(
t0, t1,

kπ

b− a

)
+

(
ikπ

b− a

)2

gn,0

(
t0, t1,

kπ

b− a

)
+ 2gn,2

(
t0, t1,

kπ

b− a

)))
V̂k(t1).

4. Error estimates

The error in our approximation consists of the error of the COS method and the error in the adjoint

expansion of the characteristic function. The error of the COS method depends on the truncation of the

integration range [a, b] and the truncation of the infinite summation of the Fourier-cosine expansion by N .

The density rapidly decays to zero as y → ±∞. Then the overall error can be bounded as follows:

ε1(x;N, [a, b]) ≤ Q

∣∣∣∣∣
∫
R\[a,b]

Γ(t, x;T, dy)

∣∣∣∣∣+

∣∣∣∣ P

(N − 1)β−1

∣∣∣∣ ,
where P and Q are constants not depending on N or [a, b] and β ≥ n ≥ 1, with n being the algebraic index

of convergence of the cosine series coefficients. For a sufficiently large integration interval [a, b], the overall

error is dominated by the series truncation error, which converges exponentially. The error in the backward

propagation of the coefficients Vk(tm) is defined as ε2(k, tm) := Vk(tm) − V̂k(tm). With [a, b] sufficiently

large and a probability density function in C∞([a, b]), the error ε1(k, tm) converges exponentially in N . For

a detailed derivation on the error of the COS method see [4] and [5].

We now present the error estimates for the adjoint expansion of the characteristic function at orders zero

and one. We consider for simplicity a model with time-independent coefficients

Xt = x+

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
η(Xs−)zdÑ(s, dz), (4.21)

where we have defined as usual dÑ(t, dz) = dN(t, dz) − ν(dz)dt. This model is similar to the model we

considered initially in (2.1); only now we deal with slightly simplified version and assume that the dependency

on Xt in the measure can be factored out, which is often enough the case.

Let X̃t be the 0th-order approximation of the model in (4.21) with x̄ = x, that is

X̃t = x+

∫ t

0

µ(x)ds+

∫ t

0

σ(x)dWs +

∫ t

0

∫
R
η(x)zdÑ(s, dz). (4.22)

The characteristic exponent of X̃t − x is

ψ(ξ) = iξµ(x)− σ(x)2

2
ξ2 − η(x)

∫
R
ν(dz)(ez − 1− z)iξ + η(x)

∫
R
ν(dz)(eizξ − 1− izξ). (4.23)
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Theorem 4.13. Let n = 0, 1 and assume that the coefficients µ, σ, η are continuously differentiable with

bounded derivatives up to order n. Let Γ̂(n)(0, x; t, ξ) in (2.6) be the nth-order approximation of the char-

acteristic function. Then, for any T > 0 there exists a positive constant C that depends only on T , on the

norms of the coefficients and on the Lévy measure ν, such that∣∣∣Γ̂(0, x; t, ξ)− Γ̂(n)(0, x; t, ξ)
∣∣∣ ≤ C (1 + |ξ|1+3n

)
tn+1, t ∈ [0, T ], ξ ∈ R. (4.24)

Proof. For the proof we refer to Appendix Appendix A.

Remark 4.14. The proof of Theorem 4.13 can be generalized to obtain error bounds for any n ∈ N: however,

one can see that, for n ≥ 2, the order of convergence improves only in the diffusive part, according to the

results proved in [10].

5. Numerical experiments

In this section we apply the method developed in Section 4 to compute the European and Bermudan

option values with various underlying stock dynamics. The computer used in the experiments has an Intel

Core i7 CPU with a 2.2 GHz processor. We use the second-order approximation of the characteristic function.

We have found this to be sufficiently accurate by numerical experiments and theoretical error estimates. The

formulas for the second-order approximation are simple, making the method easy to implement.

For the COS method, unless otherwise mentioned, we use N = 200 and L = 10, where L is the parameter

used to define the truncation range [a, b] as follows:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
,

where cn is the nth cumulant of log-price process logS, as proposed in [4]. The cumulants are calculated

using the 0th-order approximation of the characteristic function. A larger N and L has little effect on the

price, since a fast convergence is achieved already for small N and L. We compare the approximated values

to a 95% confidence interval computed with a Longstaff-Schwartz method with 105 simulations and 250 time

steps per year. Furthermore, in the expansion we always use x̄ = x.

5.1. Tests under CEV-Merton dynamics

Consider a process under the CEV-Merton dynamics:

dXt =
(
r − a(Xt)− λ

(
em+δ2/2 − 1

))
dt+

√
2a(Xt)dWt +

∫
R
dÑt(t, dz)z,

with

a(x) =
σ2

0e
2(β−1)x

2
,

ν(dz) = λ
1√

2πδ2
exp

(
−(z −m)2

2δ2

)
dz,

ψ(ξ) = −a0(ξ2 + iξ) + irξ − iλ
(
em+δ2/2 − 1

)
ξ + λ

(
emiξ−δ

2ξ2/2 − 1
)
.
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Table 1: Prices for a European and a Bermudan put option (expiry T = 0.25 with 3 exercise dates, expiry T = 1 with 10

exercise dates and expiry T = 2 with 20 exercise dates) in the CEV-Merton model for the 2nd-order approximation of the

characteristic function, and a Monte Carlo method.

European Bermudan

T K MC 95% c.i. Value MC 95% c.i. Value

0.25 0.6 0.001240-0.001433 0.001326 0.001243-0.001431 0.001307

0.8 0.005218-0.005679 0.005493 0.005314-0.005774 0.005421

1 0.04222-0.04321 0.04275 0.04274-0.04371 0.04304

1.2 0.1923-0.1938 0.1935 0.1979-0.1989 0.1981

1.4 0.3856-0.3872 0.3866 0.3948-0.3958 0.3955

1.6 0.5812-0.5829 0.5825 0.5940-0.5950 0.5941

1 0.6 0.006136-0.006573 0.006579 0.006307-0.006729 0.006096

0.8 0.02526-0.02622 0.02581 0.02617-0.02711 0.02520

1 0.08225-0.08395 0.08250 0.08480-0.08640 0.08593

1.2 0.1965-0.1989 0.1977 0.2097-0.2115 0.2132

1.4 0.3560-0.3589 0.3574 0.3946-0.3957 0.3954

1.6 0.5341-0.5385 0.5364 0.5930-0.5941 0.5932

2 0.6 0.01444-0.01513 0.01529 0.01528-0.01594 0.01365

0.8 0.04522-0.04655 0.04613 0.04596-0.04719 0.04659

1 0.1046-0.1067 0.1077 0.1149-0.1168 0.1171

1.2 0.2054-0.2083 0.2065 0.2319-0.2341 0.2345

1.4 0.3351-0.3386 0.3382 0.3968-0.3987 0.3991

1.6 0.4904-0.4944 0.4919 0.5927-0.5938 0.5935

We use the following parameters S0 = 1, r = 5%, σ0 = 20%, β = 0.5, λ = 30%, m = −10%, δ = 40% and

compute the European and Bermudan option values.

We present the results in Table 1. The option value for both the Bermudan options as well as the European

options appears to be accurate. Since the COS method has a very quick convergence, already for N = 64

the error becomes stable. For at-the-money strikes we have log10 |error| ≈ 3.5. The use of the second-order

approximation of the characteristic function is justified by the fact that the option value (and thus the error)

stabilizes starting from the second-order approximation. Furthermore, it is noteworthy that the 0th-order

approximation is already very accurate. The CPU time of the calculations depends on the number of exercise

dates. Assuming we use the second-order approximation of the characteristic function, if we have M exercise

dates the CPU time will be 5 ·M ms.

Remark 5.15. The method can be extended to include time-dependent coefficients. The accuracy and

speed of the method will be of the same order as for time-independent coefficients.

Remark 5.16. The Greeks can be calculated at almost no additional cost using the formulas presented in
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3.12. Numerically, the order of convergence is algebraic and is the same for both the exact characteristic

function as for the 2nd-order approximation.

5.2. Tests under the CEV-Variance-Gamma dynamics

Consider the jump process to be a Variance-Gamma process. The VG process, is obtained by replacing

the time in a Brownian motion with drift θ and standard deviation %, by a Gamma process with variance

κ and unitary mean. The model parameters % and κ allow to control the skewness and the kurtosis of the

distribution of stock price returns. The VG density is characterized by a fat tail and is thus used as a model

in situations where small and large asset values are more probable than would be the case for the lognormal

distribution. The Lévy measure in this case is given by:

ν(dx) =
e−λ1x

κx
1{x>0}dx+

eλ2x

κ|x|
1{x<0}dx,

where

λ1 =

(√
θ2κ2

4
+
%2κ

2
+
θκ

2

)−1

, λ2 =

(√
θ2κ2

4
+
%2κ

2
− θκ

2

)−1

.

Furthermore we have

a(x) =
σ2

0e
2(β−1)x

2
,

µ(t, x) = r +
1

κ
log

(
1− κθ − κ%2

2

)
− a(x),

ψ(ξ) = −a0(ξ2 + iξ) + irξ + i
1

κ
log

(
1− κθ − κ%2

2

)
ξ − 1

κ
log

(
1− iκθξ +

ξ2κ%2

2

)
.

We use the following parameters S0 = 1, r = 5%, σ0 = 20%, β = 0.5, κ = 1, θ = −50%, % = 20%. The

results for the European and Bermudan option are presented in Table 2.

Table 2: Prices for a European and a Bermudan put option (10 exercise dates, expiry T = 1) in the CEV-VG model for the

2nd-order approximation of the characteristic function, and a Monte Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.6 0.03090-0.03732 0.03546 0.03756-0.03876 0.03749

0.8 0.08046-0.08247 0.08029 0.08290-0.08484 0.08395

1 0.1507-0.1531 0.1511 0.1572-0.1600 0.1594

1.2 0.2501-0.2538 0.2522 0.2634-0.2668 0.2685

1.4 0.3831-0.3876 0.3847 0.4073-0.4108 0.4137

1.6 0.5430-0.5479 0.5436 0.5920-0.5938 0.5937
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5.3. Tests under a CEV-like Lévy process with a state-dependent measure and default

In this section we consider a model similar to the one used in [7]. The model is defined with local

volatility, local default and a state-dependent Lévy measure as follows:

a(x) =
1

2
(b20 + ε1b

2
1η(x)),

γ(x) = c0 + ε2c1η(x),

ν(x, dz) = ε3νN (dz) + ε4η(x)νN (dz),

η(x) = eβx. (5.25)

We will consider Gaussian jumps, meaning that

νN (dz) = λ
1√

2πδ2
exp

(
−(z −m)2

2δ2

)
dz.

The regular CEV model has several shortcomings; for instance, the volatility drops to zero as the underlying

approaches infinity; also the model does not allow the underlying to experience jumps. This model tries

to overcome these shortcomings, while still retaining CEV-like behaviour through η(x). The local volatility

function σ(x) behaves asymptotically like the CEV model, σ(x) ∼ √ε1b1eβx/2 as x → −∞, reflecting the

fact that the volatility tends to increase as the asset price drops (the leverage effect). Jumps of size dz

arrive with a state-dependent intensity of ν(x, dz). Lastly, a default arrives with intensity γ(x). The default

function γ(x) behaves asymptotically like ε2c1e
βx as x→ −∞, reflecting the fact that a default is more likely

to occur when the price goes down.

In Table 3 the results are presented for a model as defined in (5.25) without default, meaning that c0 = c1 = 0

and with a state-dependent jump measure, so ν(x, dz) = η(x)νN (dz). In this case we have

ψ(ξ) = irξ − a0(ξ2 − iξ)− λν0(em+δ2/2 − 1)iξ + λν0(emiξ−δ
2ξ2/2 − 1),

where a0 = 1
2b

2
1e
βx̄ and ν0(dz) = eβx̄νN (dz). The other parameters are chosen as: b1 = 0.15, b0 = 0, β = −2,

λ = 20%, δ = 20%, m = −0.2, S0 = 1, r = 5%, ε1 = 1, ε3 = 0, ε4 = 1, the number of exercise dates is 10 and

T = 1. From the results for both the European option and the Bermudan option we see that the method

performs very accurately, even for deeply in-the-money strikes.

In Table 4 the results are presented for the value of a defaultable put option. In case of default prior

to exercise the put option payoff is 0, in case of no default the value is (K −St)+, depending on the exercise

time. We look at the model as defined in (5.25) with the possibility of default and consider state-independent

jumps, meaning that we have γ(x) = η(x) and ν(x, dz) = νN (dz). We have

ψ(ξ) = irξ − a0(ξ2 − iξ) + γ0iξ − γ0 − λ(em+δ2/2 − 1)iξ + λ(emiξ−δ
2ξ2/2 − 1),

where a0 = 1
2b

2
1e
βx̄ and γ0 = c1e

βx̄. The other parameters are b0 = 0, b1 = 0.15, β = −2, c0 = 0, c1 = 0.1,

S0 = 1, r = 5%, ε1 = 1, ε2 = 1, ε3 = 1, ε4 = 0, the number of exercise dates is 10 and T = 1.
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Table 3: Prices for a European and a Bermudan put option (10 exercise dates, expiry T = 1) in the CEV-like model with

state-dependent measure for the 2nd-order approximation characteristic function, and a Monte Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.8 0.01025-0.01086 0.009385 0.01068-0.01125 0.01024

1 0.04625-0.04745 0.04817 0.05141-0.05253 0.05488

1.2 0.1563-0.1582 0.1564 0.1942-0.1952 0.1952

1.4 0.3313-0.3334 0.3314 0.3927-0.3934 0.3930

1.6 0.5207-0.5229 0.5218 0.5919-0.5926 0.5920

1.8 0.7103-0.7124 0.7122 0.7906-0.7913 0.7910

Table 4: Prices for a European and a Bermudan put option (10 exercise dates, expiry T = 1) in the CEV-like model with

default for the 2nd-order approximation characteristic function, and a Monte Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.8 0.002905-0.003175 0.003061 0.005876-0.006245 0.006361

1 0.01845-0.01918 0.01893 0.03419-0.03506 0.03520

1.2 0.08148-0.08296 0.08297 0.1820-0.1827 0.1824

1.4 0.2184-0.2205 0.2173 0.3793-0.3801 0.3792

1.6 0.3867-0.3892 0.3841 0.5752-0.5763 0.5763

1.8 0.5597-0.5638 0.5556 0.7727-0.7739 0.7733

Appendix A. Proof of Theorem 4.13

Let X and X̃ be as in (4.21) and (4.22) respectively. We first prove that

E[|Xt − X̃t|2] ≤ C
(
κ2t

2 + κ2
1t

3
)
, t ∈ [0, T ], (A.1)

for some positive constant C that depends only on T , on the Lipschitz constants of the coefficients µ, σ,

η and on the Lévy measure ν. Here κ1 = −ψ′(0) and κ2 = −ψ′′(0) where ψ in (4.23) is the characteristic

exponent of the Lévy process (X̃t − x).

Using the Hölder inequality, the Itô isometry (see, for instance, [15]) and the Lipschitz continuity of η, µ

and σ, the mean squared error is bounded by:

E
[
|Xt − X̃t|2

]
≤ 3E

[(∫ t

0

(µ(Xs)− µ(x))ds

)2
]

+ 3E

[(∫ t

0

(σ(Xs)− σ(x))dWs

)2
]

+ 3E

[(∫ t

0

∫
R

(η(Xs−)− η(x))zdÑ(s, dz)

)2
]
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≤ C

∫ t

0

E
[
|X̃s − x|2

]
ds+ C

∫ t

0

E
[
|Xs − X̃s|2

]
ds, (A.2)

where

C = 6

(
‖µ′‖2∞ + ‖σ′‖2∞ + ‖η′‖2∞

∫
R
z2ν(dz)

)
.

Now we recall the following relationship between the first and second moment and cumulants

E[(X̃s − x)] = c1(s), E[(X̃s − x)2] = c2(s) + c1(s)2,

where

cn(s) =
s

in
∂nψ(ξ)

∂ξn

∣∣∣∣
ξ=0

,

and ψ(ξ) is the characteristic exponent of (X̃s − x). Thus we have

E
[
|X̃s − x|2

]
= κ2s+ κ2

1s
2. (A.3)

Plugging (A.3) into (A.2) we get

E[|Xt − X̃t|2] ≤ C
(
κ2

2
t2 +

κ2
1

3
t3
)

+ C

∫ t

0

E
[
|Xs − X̃s|2

]
ds,

and therefore estimate (A.1) follows by applying the Gronwall inequality in the form

ϕ(t) ≤ α(t) + C

∫ t

0

ϕ(s)ds =⇒ ϕ(t) ≤ α(t) + C

∫ t

0

α(s)eC(t−s)ds,

that is valid for any C ≥ 0 and ϕ, α continuous functions.

From (A.1) and (A.3) we can also deduce that

E
[
|Xt − x|2

]
≤ 2E

[∣∣Xt − X̃t

∣∣2]+ 2E
[∣∣X̃t − x

∣∣2] ≤ C (κ2t+ κ2
1t

2
)
, t ∈ [0, T ]. (A.4)

Moreover, from (A.1) we also get the following error estimate for the expectation of a Lipschitz payoff

function v: ∣∣∣E [v(Xt)]− E[v(X̃t)]
∣∣∣ ≤ C√κ2t+ κ2

1t
2, t ∈ [0, T ],

where now C also depends on the Lipschitz constant of v. In particular, taking v(x) = eixξ, this proves

(4.24) for n = 0.

Next we prove (4.24) for n = 1.

Proceeding as in the proof of Lemma 6.23 in [10] with u(0, x) = Γ̂(0, x; t, ξ) and x̄ = x, we find

Γ̂(0, x; t, ξ)− Γ̂(1)(0, x; t, ξ) =

∫ t

0

E
[
(L− L0)Ĝ1(s,Xs; t, ξ) + (L− L1)Ĝ0(s,Xs; t, ξ)

]
ds,

where the 1st-order approximation is as usual

Γ̂(1)(s,X; t, ξ) = Ĝ0(s,X; t, ξ) + Ĝ1(s,X; t, ξ),
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with

Ĝ0(s,X; t, ξ) = eiXξ+(t−s)ψ(ξ),

Ĝ1(s,X; t, ξ) = eiXξ+(t−s)ψ(ξ)g
(1)
0 (t− s, ξ),

and g
(1)
0 as in (2.13). Using the Lagrangian remainder of the Taylor expansion, we have

L− L0 = γ′(ε′)(X − x)(∂X − 1) + a′(ε′)(X − x)(∂XX − ∂X) + η′(ε′)(X − x)

∫
R
ν(dz)(ez − 1− z)∂X

+ η′(ε′)(X − x)

∫
R
ν(dz)(ez∂X − 1− z∂X),

L− L1 =
1

2
γ′′(ε′′)(X − x)2(∂X − 1) +

1

2
a′′(ε′′)(X − x)2(∂XX − ∂X)

+
1

2
η′′(ε′′)(X − x)2

∫
R
ν(dz)(ez − 1− z)∂X +

1

2
η′′(ε′′)(X − x)2

∫
R
ν(dz)(ez∂X − 1− z∂X),

for some ε′, ε′′ ∈ [x,X]. Now, |Ĝ0| ≤ 1 because Ĝ0 is the characteristic function of the process X̃ in (4.22);

thus, we have ∣∣∣(L− L1)Ĝ0(s,Xs; t, ξ)
∣∣∣ ≤ C(1 + |ξ|2) |Xs − x|2 .

On the other hand, from (2.13) we have∣∣∣g(1)
0 (t− s, ξ)

∣∣∣ ≤ C(t− s)2
(
1 + |ξ|4

)
,

and therefore we get ∣∣∣(L− L0)Ĝ1(s,Xs; t, ξ)
∣∣∣ ≤ C(t− s)2(1 + |ξ|4) |Xs − x| .

So we find∣∣∣Γ̂(0, x; t, ξ)− Γ̂(1)(0, x; t, ξ)
∣∣∣ ≤ C(1 + |ξ|4)

∫ t

0

(
(t− s)2E [|Xs − x|] + E

[
|Xs − x|2

])
ds

The thesis then follows from estimate (A.4) and integrating.

Appendix B. The 2nd-order approximation of the characteristic function

For completeness we present here the formulas of the characteristic function approximation in the general

case up to the 2nd-order approximation for a process as in (2.1) with a local-volatility coefficient a(t, x), a

local default intensity γ(t, x) and a state-dependent measure ν(t, x, dz). We expand the coefficients around

x̄ = x. This choice of x̄ is most common in practice and it simplifies the formulas significantly. We have

Ĝ(0)(t, x;T, ξ) = eiξx+(T−t)ψ(ξ)

Ĝ(1)(t, x;T, ξ) = Ĝ(0)(t, x;T, ξ)

(
1

2
i(T − t)2ξ(i+ ξ)α1ψ

′(ξ) +
1

2
(T − t)2(i+ ξ)γ1ψ

′(ξ)

− 1

2

∫
R
ν1(dz)z(T − t)2ξψ′(ξ)− 1

2

∫
R
ν1(dz)(ez − 1− z)ξψ′(ξ)

23



− 1

2

∫
R
i(eizξ − 1)(T − t)2ψ′(ξ)

)
Ĝ(2)(t, x;T, ξ) = Ĝ(0)(t, x;T, ξ)

(
G

(2)
1 (t, x;T, ξ) +G

(2)
2 (t, x;T, ξ) +G

(2)
3 (t, x;T, ξ)

+G
(2)
4 (t, x;T, ξ) +G

(2)
5 (t, x;T, ξ)

)
,

where we have defined:

G
(2)
1 (t, x;T, ξ) =

1

2
((T − t)2a2ξ(i+ ξ)ψ′′(ξ)− 1

8
(T − t)4a2

1ξ
2(i+ ξ)2ψ′(ξ)2

− 1

6
(T − t)3ξ(i+ ξ)(a2

1(i+ 2ξ)ψ′(ξ)− 2a2ψ
′(ξ)2 + a2

1ξ(i+ ξ)ψ′′(ξ)),

G
(2)
2 (t, x;T, ξ) =

1

8
(T − t)2(i+ ξ)2γ2

1ψ
′(ξ)2 +

1

2
(T − t)2(1− iξ)γ2ψ

′′(ξ)

+
1

6
(T − t)3(i+ ξ)(γ2

1ψ
′(ξ)− 2iγ2ψ

′(ξ)2 + (i+ ξ)γ2
1ψ
′′(ξ)),

G
(2)
3 (t, x;T, ξ) =

1

6
(T − t)3ξψ′(ξ)

∫
R2

zν1(dz) +
1

3
i(T − t)3ξψ′(ξ)2

∫
R
zν1(dz)

+
1

8
(T − t)4ξ2ψ′(ξ)2

∫
R2

zν1(dz) +
1

2
iξ(T − t)2ψ′′(ξ)

∫
R
zν1(dz)

+
1

6
(T − t)3ξ2ψ′′(ξ)

∫
R2

zν1(dz),

G
(2)
4 (t, x;T, ξ) = −1

6
i(T − t)3ψ′(ξ)

∫
R

(eizξ − 1)ν1(dz)

∫
R
zeizξν1(dz)

− 1

8
(T − t)4ψ′(ξ)2

∫
R2

(eizξ − 1)ν1(dz)− 1

3
(T − t)3ψ′(ξ)

∫
R

(eizξ − 1)ν2(dz)

− 1

6
(T − t)3ψ′′(ξ)

∫
R2

(eizξ − 1)ν1(dz)− 1

2
(T − t)2ψ′′(ξ)

∫
R

(eizξ − 1)ν2(dz),

G
(2)
5 (t, x;T, ξ) =

1

6
(T − t)3ξψ′(ξ)

∫
R2

(ez − 1− z)ν1(dz) +
1

8
(T − t)4ξ2ψ′(ξ)2

∫
R2

(ez − 1− z)ν1(dz)

+
1

3
i(T − t)3ξψ′(ξ)

∫
R
(ez − 1− z)ν2(dz) +

1

6
(T − t)3ξ2ψ′′(ξ)

∫
R2

(ez − 1− z)ν1(dz)

+
1

2
i(T − t)2ξψ′′(ξ)

∫
R
(ez − 1− z)ν2(dz).

Essentially G
(2)
1 corresponds to the Taylor expansion of the local volatility, G

(2)
2 results from the default

function, G
(2)
3 , G

(2)
4 and G

(2)
5 are related to the state-dependent measure.
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