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Abstract. We develop a modern deep convolutional neural network for
conditional time series forecasting based on the recent WaveNet architec-
ture. The proposed network contains stacks of dilated convolutions that
widen the receptive field of the forecast; multiple convolutional filters
are applied in parallel to separate time series and allow for the fast pro-
cessing of data and the exploitation of the correlation structure between
the multivariate time series. The performance of the deep convolutional
neural network is analyzed on various multivariate time series including
commodities data and stock indices and compared to that of the well-
known autoregressive model and a fully convolutional network. We show
that our network is able to effectively learn dependencies between the
series without the need of long historical time series and significantly
outperforms the baseline neural forecasting models.
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1 Introduction

Forecasting financial time series using past observations has been a significant
topic of interest for obvious reasons. It is well known that while temporal rela-
tionships in the data exist, they are difficult to analyze and predict accurately
due to the non-linear trends and noise present in the series. Feedforward neural
networks have been a popular way of learning the dependencies in the data, by
e.g. using multiple inputs from the past to make a prediction for the future time
step [1]. One downside of classical feedforward neural networks is that a large
sample size of data is required to obtain a stable forecasting result.

The main focus of this paper is on multivariate time series forecasting, specif-
ically financial time series. In particular, we forecast time series conditional on
other, related series. Financial time series are known to both have a high noise
component as well as to be of limited duration — even when available, the use of
long histories of stock prices can be difficult due the changing financial environ-
ment. At the same time, many different, but strongly correlated financial time
series exist. Here, we aim to exploit multivariate forecasting using the notion of
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conditioning to reduce the noisiness in short duration series. Effectively, we use
multiple financial time series as input in a neural network, thus conditioning the
forecast of a time series z(t) on both its own history as well as that of a second
(or third) time series y(t). Training a model on multiple stock series allows the
network to exploit the correlation structure between these series so that the net-
work can learn the market dynamics in shorter sequences of data. Furthermore,
using multiple conditional time series as inputs can improve both the robustness
and forecast quality of the model by learning long-term temporal dependencies
in between series, even if these are misaligned.

A convolutional neural network (CNNs) is a type of network that has recently
gained popularity due to its success in classification problems (e.g. image recog-
nition [6] or time series classification [12]). Here, we employ this type of network
and show that long-term temporal dependencies in and between financial time
series can be learned by means of a deep convolutional neural network based on
the WaveNet model [11]. The network makes use of dilated convolutions applied
to multiple time series so that the receptive field of the network is wide enough
to learn both short and long-term dependencies. We present an Augmented
WaveNet architecture suitable for learning conditional time series by including
batch normalization [5] and using a 1 x &k convolution with parametrized skip
connections [3] from the input time series as well as the time series we condition
on, in this way learning long-term interdependencies in an efficient manner. This
improves the forecast, while at the same time limiting the requirement for a long
historical price series and reducing the noise, since it allows one to exploit the
correlations in between related time series. Knowing the strong performance of
CNNs on classification problems we show that they can be applied successfully
to forecasting financial time series, without the need of large samples of data.
We compare the performance of the Augmented WaveNet model to a state-of-
the-art fully convolutional network (FCN), as used successfully in [12] and [9] for
time series classification, and an autoregressive model popular in econometrics
and show that our model is much better able to learn important dependencies
in between financial time series resulting in a more robust and accurate forecast.

2 The model

Consider a one-dimensional time series z = {z(0), ..., x(N — 1)}. The task is for
a predictor is to output the next value z(t) conditional on the series’ history,
x(0), ...,z(t — 1) by maximizing the likelihood function

N—1
p(x) = [] pa®)x(0),..., 2(t = 1)). (1)
t=0

To learn this likelihood function, we present a convolutional neural networks in
the form of the WaveNet architecture [11] augmented with a number of recent
architectural improvements for neural networks such that the architecture can be
applied successfully to time series prediction. In a convolutional neural networks,
in each layer [ the input feature map, f;_; € R*N*Mt is convolved with a set
of M1 filters wlh € RVHFXMi ' p — 1, .. M.
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Time series often display long-term correlations: to enable the network to
learn these long-term dependencies we use stacked layers of dilated convolutions.
As in [13], a dilated convolution outputs a stack of M;;, feature maps given by

oo M!

() =a fim1) (@) = > > wi(j,m) fima(i — dj, m), (2)

j=oom=1

where d is the dilation factor and M the number of channels. We use an archi-
tecture similar to [13] and [11] with S stacks of dilated convolutions, where one
stack consists of L layers of dilated convolutions, I = 0, ..., L — 1 and with the
dilations increasing with a factor of two: d € [2°,21,...,2E71]. The filters w are
chosen to be of size 1 x k := 1 x 2. All elements in the feature map share the
same weights, allowing features to be detected in a time-invariant manner.

To make sure that the receptive field of the network, i.e. the set of elements
in the input that modifies the value of the output feature map, when predicting
x(t + 1) contains only x(0),...,x(t), we use causal convolutions. In time series
this is equivalent to padding the input with a vector of zeros of the size of the
receptive field, so that the input is [0, ...0, 2(0), ..., z(IN —1)]. At training time the
prediction of z(1), ..., 2(N) is computed by convolving the input 2(0), ..., z(N —1)
with a kernel. At testing time the predictions are made sequentially so that each
prediction is fed back into the network at the next time step.

The network weights, the filters wlh, are trained with backpropagation to
minimize the mean absolute error (MAE); to avoid overfitting we use L2 regu-
larization with regularization term -, so that the cost function is given by

N—

L M
Z (t+1) —a(t +1) %Zz(wm?, (3)
=0

=0 h=1
where & (¢ + 1) denotes the forecast of (¢ + 1) using z(0), ..., z(%).

Activation functions. In each layer we use a rectified linear unit (ReLU) as
the activation function defined as ReLU(x) := max(z,0), so that the output
from layer [ is:
M

fi= [ReLU(w} %4 fi1), s RELU (w4 i) (4)
where x4 denotes as usual the convolution with dilation d and f; € R1*N*Mu
denotes the output of the convolution with filters wl, h = 1,..., M4 in layer [.
As opposed to the gated activation function used in [11] for audio generation,
here we propose to use the ReLLU as it was found to be most efficient when applied
to the forecasting of the non-stationary, noisy time series. The final layer, [ = L,

has a linear activation function, which outputs the forecasted value of the time
series & = {£(0), ..., Z(N)}.

Residual learning. When adding more layers to the network, standard back-
propagation tends to become unable to find the optimal weights. This is known
as the degradation problem [3]. The proposed way around this problem is to use
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residual connections [3] which force the network to approximate H(x) — x, in-
stead of H(zx), the desired mapping, so that the identity mapping can be learned
by driving all weights to zero. Similar to [11], in our network, we add a residual
connection after each dilated convolution. In the case of M; > 1 the residual
connection follows a 1x1 convolution to reduce the number of filters back to one
to match the size of the input vector. This allows us to stack multiple layers,
while retaining the ability of the network to correctly map dependencies learned
in the initial layers.

Batch normalization. In [8] it is noted that networks tend to converge faster
when the mean of the input signal in each layer is close to zero and the variance is
close to one. The problem of a changing distribution of the layer activations while
training is known as the internal covariate shift, and can be reduced by fixing
the distribution of the input to each layer, f; € R*>N*M: yging normalization
[5]. To make sure that each layer is able to represent the same as prior to the
normalization, we scale and shift the normalized values in each layer using a pair
of trainable parameters p and £, see [5]. The normalization layer is added prior
to the dilated convolutions and is computed over the whole time series. While
batch normalization makes the performance of the network less dependent on
the initialization, we found the network to be even more robust when using a
Glorot initialization [2] for the weights to the rectified linear and linear units:

V6 V6
w ~U (—m,m> , (5)

with n = Mjy1 x 1 X k, the number of filters in layer [ times the filter size 1 x k.

3 Conditioning

When forecasting one time series conditional on others, we model a conditional
distribution given by

N-1

p(zly) = T p(@(®)2(0), ... 2(t = 1),5(0), ... y(t = 1)). (6)

t=0

The conditioning on the time series y(t) is done by computing the activation
function of the convolution with filters w” and v" in first layer as

ReLU (wh *q x + o x4 v). (7)

In [11] the authors propose to take vé‘ as a 1 x 1 filter. Given the short input
window, this type of conditioning is not always able to capture all dependencies
between the time series. Therefore, we use a 1 x k convolution, increasing the
probability of the correct dependencies being learned with fewer layers. Note
that this type of conditioning is similar to convolving the two-dimensional input
with a two-dimensional filter.

Instead of the residual connection in the first layer, we add skip connections
parametrized by 1x1 convolutions from both the input as well as the condition to
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Fig. 1. The total network (L) and the dilated convolution structure (R)

the result of the dilated convolution. The parametrization of the skip connections
makes sure that our model is able to correctly extract the necessary relations
between the forecast and both the input and condition. The conditioning can
easily be extended to a multivariate No x N time series by using an Ng X k
filter. The network structure is shown in Figure 1.

4 Results

Here, we present the results of the CNN applied to forecasting financial time
series. We compare the performance of the WaveNet architecture to a fully con-
volutional network (FCN) ([12], [9]) and a classic autoregressive model. The FCN
was shown to be a strong state-of-the-art baseline for time series classification,
performing better than a multilayer perceptron and a residual network [12] and
can be applied to multiple time series in a way similar to WaveNet. It consists of
three convolution blocks with the number of filters M; € [128, 256, 128] and filter
sizes k € [3,5,8]. We replace the global average pooling layer, which generates
one feature map for each corresponding category of a classification task, with a
1 x 1 convolution, since we require only one output class, namely the forecast
of the time series and use a sigmoid activation function. The model structure
was optimized on synthetic data, and then trained on 10 different initializations
using different random seeds by minimizing the MAE on the training set with
10,000 iterations. This was the number of iterations that allowed the models to
achieve a satisfactory convergence on all the time series for all initializations.
The forecast for each initialization is computed over the test set and the average
MAE is reported. We use a learning rate of A\ = 0.001 and regularization v = 1.

Financial Data The commodities data used consists of the daily prices of
front monthly and seasonal UK gas, monthly German power, a CO2 December
contract (for the period Jan. ’09 to May ’16) and monthly Brent oil (for Jan. ’09
to May ’15), taken from Reuters and Trayport and the data for the Nikkei and
S&P500 indices (Jan. 12 to Jan ’17) taken from Yahoo! Finance. The training
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and test split is done so that the last year of data falls into the test set (i.e.
roughly 250 data points). In the WaveNet we use L =5, S =1 and M; = 1.

Other Time Series The data is taken from the Time Series data library [4]
and contains time series such as the temperature, rainfall and daily births. In
the WaveNet we use L =9, S =1 and M; = 1. Depending on the length of the
time series we either take the length of the test set to be the final 200 points if
the total length is bigger than 400, or 100 otherwise.

Unconditional forecasting Table 1 presents the results of the unconditional
Augmented WaveNet applied to forecasting several time series. We see that
our model is able to extract relations from the data efficiently and performs
consistently better than the FCN independent of the initialization of the weights.
We note that the FCN due to the large number of filters tends to overfit certain
time series resulting in a low training error but a poor generalisation, as can also
be seen from the high standard error in the MAE. Overall, the neural network in
the form of a WaveNet, with its fairly simple architecture, achieves a competitive
performance in terms of the MAE and tends to outperform the FCN with an
improvement similar to the one observed in image recognition.

Conditional Forecasting The results for the conditional FCN and WaveNet
applied to the financial time series are presented in Table 2. The conditioning
allows the WaveNet to outperform the FCN, which often has trouble learning the
correct dependencies. As we demonstrate, the conditional Augmented WaveNet
leads to significant improvements in prediction accuracy as compared to the un-
conditional forecasts and thus works well for learning long-term dependencies in
and between time series. In Table 2 we also estimated the time delay between
two sequences using the arguments of the maximum (or minimum, in case of a
negative cross-correlation) of the cross-correlation. Note that also in the neigh-
borhood of these maxima/minima the cross-correlation is still significant. These
results correspond to the results observed from the conditioning, e.g. the S&P500
is shown to precede the Nikkei index, which also makes sense from an economic
standpoint, and therefore conditioning the Nikkei on the S&P500 gives a more
significant improvement. The conditional CNN can therefore also give an idea
of the relationship between the time delays in time series.

A final comparison We end this section with a comparison of the uncondi-
tional and conditional Augmented WaveNet model (WWN and cWN respectively)
with both a naive forecast, Z(t) = z(t — 1), and the vector autoregressive model
(VAR) that is commonly used in econometrics for multivariate forecasting for
forecasting the daily return of the S&P500. The performance is evaluated using
the mean absolute scaled error (MASE), which scales the measured error using
the mean absolute error of a naive forecast and the hit rate (HITS), see also
[10]. The forecast is conditioned on the volatility index (VIX) and the CBOE
10 year interest rate. We use data spanning the period Jan. '06 to Dec. '16. The
model is trained on every 12 months, forecasted for one month, then shifted by
one month and the process is repeated. The results are then averaged over all
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Table 1. MAE for the forecast on the test set of the unconditional WaveNet model
compared to the FCN and ARMA model.

Time series |WaveNet  |[FCN |[ARMA(2,2)
Mean daily temperature Dallas 0.62 £+ 0.11/0.88 £ 0.14 [0.76
Minimum temperature Melbourne [0.61 + 0.13|1.07 & 0.64 |0.64
Number of daily births Quebec 0.58 + 0.17|0.57 £+ 0.15|0.85
Daily total female births California|0.81 + 0.10|1.09 £+ 0.25 |0.82
Mean daily rainfall Melbourne 0.51 £+ 0.05|0.53 £ 0.17 [0.59
Gas 1S 0.87 + 0.16(1.08 £+ 0.09 |1.12
Power 1M 0.43 + 0.05 [0.41 £ 0.03|0.69
CO2 Dec. 0.32 £ 0.05 |0.27 £+ 0.02(0.31
Oil 1M 0.45 + 0.01 |0.43 £+ 0.00|0.44
Nikkei Index 0.23 + 0.05(0.43 £ 0.09 |0.44
S&P500 0.20 + 0.09(0.25 £ 0.05 |0.46

Table 2. MAE for the forecast on the test set of the conditional WaveNet model
compared to the FCN and the estimated time delays between the time series. The length
of the commodities time series is N = 1926 and the indices have length N = 1242.

Time series [WaveNet [F CN HTime Delay
Gas 15 on Oil 1M 0.74 + 0.10(0.89 £ 0.19||0

Oil 1M on Gas 1S 0.27 + 0.09(0.47 £ 0.02||0

Oil 1M on Gas 1M 0.44 + 0.04|0.75 £ 0.31{|/1670
Power 1M on CO2 Dec. 0.37 + 0.08(0.61 £ 0.11|195

Gas 1S on Power 1M 0.82 + 0.14(0.94 £ 0.25||-479

Gas 1S on Power 1M and Oil 1M [0.78 £ 0.19]0.96 £ 0.35{|0

Power 1M on Gas 1S 0.44 + 0.13(0.99 £ 0.29(|479

Nikkei on SEP500 0.13 + 0.03(0.20 £ 0.07||8

SE&P500 on Nikkei 0.16 £+ 0.02|0.27 £ 0.03|-8

Table 3. MASE and HITS for forecasting the one-day ahead return of the S&P500
with a naive forecast, the unconditional and conditional WaveNet (with v = 0.1) and
a VAR model.

|  Naive uWN cWN VAR
Period MASE HITS[MASE HITS|MASE HITS[MASE HITS
Jan. 06 - Dec. 08] 1 0.32] 0.55 0.57[ 0.60 0.64| 0.65 0.51
Jan. 09 - Dec. ’11| 1 0.35| 0.60 0.51| 0.66 0.62| 0.69 0.53
Jan.’12 - Dec.’14| 1 0.32| 0.61 0.55| 0.69 0.55| 0.69 0.53
Jan.’14 - Dec.’12| 1 0.37| 0.60 0.53| 0.69 0.56| 0.72 0.52
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of these monthly testing periods. From Table 3 we see that the unconditional
WaveNet performs best in terms of MASE. The conditional WaveNet exploits
the correlation in between the three time series resulting in a high hit rate, but
a slightly worse MASE compared to the unconditional one due to it being fitted
on multiple noisy series. After the crisis the dependencies between the S&P500
and the interest rate and volatility index seem to have weakened (due to e.g.
the lower interest rate or higher spreads) as the improvement of the conditional
WaveNet over the unconditional WaveNet is smaller, so WaveNet can be used
to recognize these switches in the underlying financial regimes. While not a one-
on-one comparison, WaveNet scores significantly higher hit rates for the one-day
ahead returns of the S&P500 compared to traditional neural networks [7]. We
conclude that even though time series forecasting remains a complex task and
finding one model that fits all is hard, we have shown that the WaveNet is a
simple and efficient model that can act as a strong baseline for forecasting.

References

1. K. CHAKRABORTY, K. MEHROTRA, C. K. MOHAN, AND S. RANKA, Forecasting
the Behavior of Multivariate Time Series using Neural Networks, Neural networks,
5 (1992), pp. 961-970.

2. X. GLOROT AND Y. BENGI0, Understanding the Difficulty of Training Deep Feed-
forward Neural Networks, Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, (2010).

3. K. HE, X. ZHANG, S. REN, AND J. SUN, Deep Residual Learning for Image Recog-
nition, Available at ArXiv, (2015).

4. R. HYNDMAN, Time Series Data Library, http://data.is/TSDLdemo, Accessed on
24/01/17.

5. S. IorrE AND C. SZEGEDY, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, coRR, (2015).

6. A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, ImageNet Classification with
Deep Convolutional Neural Networks, Advances in Neural Information Processing
Systems 25, (2012), pp. 1097-1105.

7. M. KUMAR ET AL., Nonlinear Prediction of the Standard & Poors 500 and the Hang
Seng Index Under a Dynamic Increasing Sample, Asian Academy of Management
Journal of Accounting & Finance, 5 (2009), pp. 101-118.

8. Y. LECuUN, L. BorTou, G. B. ORR, AND K. R. MULLER, Efficient BackProp,
Springer Berlin Heidelberg, 1998, pp. 9-50.

9. R. MITTELMAN, Time-series modeling with undecimated fully convolutional neural
networks, arXiv preprint arXiv:1508.00317, (2015).

10. M. PENA, A. ARRATIA, AND L. A. BELANCHE, Multivariate dynamic kernels for
financial time series forecasting, in International Conference on Artificial Neural
Networks, Springer, 2016, pp. 336-344.

11. A. vAN DEN OORD, S. DIELEMAN, H. ZEN, K. SIMONYAN, O. VINYALS,
A. GRAVES, N. KALCHBRENNER, A. SENIOR, AND K. KAVUKCUOGLU, WaveNet:
A Generative Model for Raw Audio, ArXiv e-prints, (2016).

12. Z. WaNG, W. YAN, AND T. OATEs, Time Series Classification from Scratch with
Deep Neural Networks: A Strong Baseline, CoRR, abs/1611.06455 (2016).

13. F. Yu AND V. KOLTUN, Multi-Scale Context Aggregation by Dilated Convolutions,
ArXiv e-prints, (2015).



